[1] Coven E, Smital J. Entropy-minimality. Acta Math Univ Comen, 1993, 62: 117--121
[2] 王肖义, 黄煜. 不含混沌真子系统的Li-Yorke混沌. 数学学报, 2012, 55(4): 749--756
[3] Robinson C. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (2nd ed). Boca Raton: CRC Press, 1999
[4] Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982
[5] Gu R B. The large deviations theorem and ergidicity. Chaos, Solitons \& Fractals, 2007, 34: 1387--1392
[6] Zhou Z L. Weakly almost periodic point and ergodic measure. Chin Ann Math, 1992, 3B(2): 137--142
[7] 周作领, 何伟弘. 轨道结构的层次与拓扑半共轭.中国科学 (A辑), 1995, 38: 897--907
[8] Li R S. A note on stronger forms of sensitivity for dynamical systems. Chaos, Solitons \& Fractals, 2012, 45: 753--758
[9] Devaney R L. An Introduction to Chaotic Dynamical Systems. Redwood City: Addiso-Wesley, 1989
[10] Ruelle D, Takens F. On the natural of turbulence. Commn Math Phys, 1971, 20: 167--192
[11] Li T Y, Yorke J. Period three implies chaos. Am Math Monthly, 1975, 82: 985--992
[12] 叶向东, 黄文, 邵松. 拓扑动力系统概论.北京: 科学出版社, 2008
[13] 周作领. 测度中心与极小吸引中心. 科学通报, 1993, 38(7): 542--545
[14] Yin J D, Zhou Z L. A characterization of topologically transitive attributes for a class of dynamical systems. Chin Ann Math(Series B), 2012, 33(3): 419--428
[15] Blanchard F, Glasner E, Kolyada S, Maas A. On Li-Yorke pairs. J Reine Angew Math, 2002, 547: 51--68 |