[1] Toader Gh. Some mean values related to the arithmetic-geometric mean. J Math Anal Appl, 1998, 218(2): 358--368
[2] Qi F, Huang Z. Inequalities of the complete elliptic integrals. Tamkang J Math, 1998, 29(3): 165--169
[3] Qi F, Guo S L, Guo B N, Chen S X. A class of k-log-convex functions and their applications to some special functions.Integral Transforms Sepc Funct, 2008, 19(3/4): 195--200
[4] Qi F, Niu D W, Guo B N. Refinements, generalizations, and applications of Jordan's inequality and related problems. J Inequal Appl, 2009, Art. ID 271923: 52 pages
[5] Guo B N, Qi F. Some bounds for the complete elliptic integrals of the first and second kinds. Math Inequal Appl, 2011,14(2): 323--334
[6] Chu Y M, Wang M K, Qiu S L, Qiu Y F. Sharp generalized Seiffert mean bounds for Toader mean. Abstr Appl Anal, 2011, Art. ID 605259: 8 pages
[7] Chu Y M, Wang M K, Qiu S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Indian Acad Sci Math Sci, 2012, 122(1): 41--51
[8] Wang M K, Chu Y M, Qiu S L, Jiang Y P. Bounds for the perimeter of an ellipse. J Approx Theory, 2012, 164(7): 928--937
[9] Chu Y M, Wang M K. Optimal Lehmer mean bounds for the Toader mean. Results Math, 2012, 61(3/4): 223--229
[10] Chu Y M, Wang M K. Inequalities between arithmetic-geometric, Gini, and Toader means. Abstr Appl Anal, 2012, Art.ID 830585: 11 pages
[11] Wang M K, Chu Y M. Asymptotical bounds for complete elliptic integrals of the second kind. J Math Anal Appl, 2013,402(1): 119--126
[12] Chu Y M, Wang M K, Ma X Y. Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J Math Inequal, 2013, 7(1): 161--166
[13] Li W H, Zheng M M. Some inequalities for bounding Toader mean. J Funct Spaces Appl, 2013, Art.ID 394194: 5 pages
[14] Vuorinen M. Hypergeometric functions in geometric function theory//Srinivasa Rao. Special Functions and Differential Equations.
New Delhi: Allied Publ, 1998: 119--126
[15] 裘松良, 沈洁敏. 关于平均值的两个问题. 杭州电子工业学院学报, 1997, 17(3): 1--7
[16] Barnard R W, Pearce K, Richards K C. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J Math Anal, 2000, 31(3):693--699
[17] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals. J Comput Appl Math, 2004, 172(2):289--312
[18] Song Y Q, Jiang W D, Chu Y M, Yan D D. Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means.J Math Inequal, 2013, 7(4): 751--757
[19] Hua Y, Qi F. The best bounds for Toader mean in terms of the centroidal and arithmetic means.Filomat, 2014, 28(4): 775--780% arXiv: 1303.2451v1 [math.CA]
[20] Anderson G D, Vamanamurthy M K, Vuorinen M.Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley \&\ Sons, 1997
[21] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1992 |