[1] Kirchhoff G. Mechanik. Leipzig: Teubner, 1883
[2] Alves C O, Corr\^{e}a F, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Computers and Mathematics with Applications, 2005, 49(1): 85--93
[3] Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. A global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear disspation. Advanced Differential Equations, 2001, 6(1): 701--730
[4] D'Ancona P, Spagnolo S. Global solvability for the degenerate {K}irchhoff equation with real analytic data. Inventiones Mathematicae, 1992, 108(1): 247--262
[5] Perera K, Zhang Z. Nontrivial solutions of {K}irchhoff-type problems via the {Y}ang index. Journal of Differential Equations, 2006, 221(1): 246--255
[6] Zhang Z, Perera K. Sign changing solutions of {K}irchhoff type problems via invariant sets of descent flow Journal of Mathematical Analysis and Applications, 2006, 317(2): 456--463
[7] Mao A, Zhang Z. Sign-changing and multiple solutions of {K}irchhoff type problems without the {PS} condition. Nonlinear Analysis: Theory, Methods and Applications, 2009, 70(3): 1275--1287
[8] He X, Zou W. Infinitely many positive solutions for {K}irchhoff-type problems. Nonlinear Analysis: Theory, Methods and Applications, 2009, 70(3): 1407--1414
[9] Cheng B, Wu X. Existence results of positive solutions of {K}irchhoff type problems. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71(10): 4883--4892
[10] Jin J, Wu X. Infinitely many radial solutions for {K}irchhoff-type problems in . Journal of Mathematical Analysis and Applications,
2010, 369(2): 564--574
[11] Azzollini A. The elliptic Kirchhoff equation in perturbed by a local nonlinearity. Diferential Integral Equations, 2012, 25: 543--554
[12] Pomponio A, Azzollini A, d'Avenia P. Multiple critical points for a class of nonlinear functionals. Ann Mat Pura Appl, 2011, 190(4): 507--523
[13] Wu X. Existence of nontrivial solutions and high energy solutions for {S}chr{\"o}dinger-{K}irchhoff-type equations in . Nonlinear Analysis: Real World Applications, 2011, 12(2): 1278--1287
[14] Sun J J, Tang C L. Existence and multiplicity of solutions for {K}irchhoff type equations. Nonlinear Analysis: Theory, Methods and Applications, 2010, 74(4): 1212--1222
[15] Schechter M, Zou W M. Critical Point Theory and its Applications. New York: Springer, 2006
[16] Willem M. Minimax Theorems. Boston: Birkhauser, 1996
[17] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. Journal of Functional Analysis, 2005, 225(2): 352--370
[18] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Analysis, 1995, 25(11): 1095--1113 |