[1]} Aiena P. Fredholm and Local Spectral Theory,
with Applications to Multipliers.
Dordrecht: Kluwer Academic Publishers, 2004
\REF{
[2]} Aiena P, Biondi M. Property $(\omega)$ and perturbations.
J Math Anal Appl, 2007, {\bf 336}(1): 683--692
\REF{
[3]} Berberian S. The Weyl spectrum of an operator.
Indiana Univ Math J, 1970, {\bf 20}(6): 529--544
\REF{
[4]} Cao X H, Guo M Z, Meng M. Weyl spectra and Weyl's
theorem. J Math Anal Appl, 2003, {\bf 288}: 758--767
\REF{
[5]} Harte R, Lee W Y. Another note on Weyl's theorem.
Trans Amer Math Soc, 1997, {\bf 349}: 2115--2124
\REF{
[6]} Herrero D A, Taylor T J, Wang Z Y. Variation of
the point spectrum under compact perturbations. Operator Theory:
Advances and Applications, 1988, {\bf 32}: 113--158
\REF{
[7]} Herrero D A. Economical compact perturbations.
II: Filling in the holes.
J Operator Theory, 1988, {\bf 19}(1): 25--42
\REF{
[8]} Herrero D A, Apostol C, Fialkow L. Approximation
of Hilbert Space Operators.
New York: Longman Scientific and Technical, 1989
\REF{
[9]} Ji Y Q. Quasitriangular+small compact=strongly
irreducible. Trans Amer Math Soc, 1999, {\bf 351}(11): 4657--4673
\REF{
[10]} Oberai K K. On the Weyl spectrum II.
Illinois J Math, 1977, {\bf 21}: 84--90
\REF{
[11]}Rashid M H M. Property $(g\omega)$ and perturbations.
Bulletin of the Belgian Mathematical Society-Simon
Stevin, 2011, {\bf 18}(4): 635--654
\REF{
[12]} Rashid M H M. Weyl's type theorems and hypercyclic
operators. Acta Mathematica Scientia, 2012, {\bf 32}(2): 539--551
\REF{
[13]} Rako\u{c}evi\`{c} V.
Operators obeying a-Weyl's theorem.
Rev Roumaine Math Pures Appl, 1989, {\bf 34}(10): 915--919
\REF{
[14]} Rako\u{c}evi\`{c} V.
On a class of operators. Mat Vesnik, 1985, (37): 423--426
\REF{
[15]} Weyl H. \"Uber
beschr\"{a}nkte quadratische Formen,
deren Differenz vollstetig ist.
Rend Circ Mat Palermo, 1909, {\bf 27}: 373--392
|