[1] Chen Z X, Yi H X. On sharing values of meromorphic functions and their differences. Results Math, 2013, 63: 557--565
[2] Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J, 2008, 16: 105--129
[3] Gundersen G G. Meromorphic functions that share three or four values. J London Math Soc, 1979, 20: 457--466
[4] Gundersen G G. Meromorphic functions that share four values. Trans Amer Math Soc, 1983, 277: 545--567
[5] Gundersen G G. Meromorphic functions that share three values IM and a fourth value CM. Complex Variables Theory Appl, 1992, 20: 99--106
[6] Hayman W. Meromorphic Functions. Oxford: Clarendon Press, 1964
[7] Halburd R G, Korhonen R J. Nevanlinna theory for the difference operator. Ann Acad Sci Fenn Math, 2006, 31: 463--478
[8] Heittokangas J, Korhonen R, Laine I, Rieppo J, Zhang J L. Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. J Math Anal Appl, 2009, 355: 352--363
[9] Hua X H. A unicity theorem for entire functions. Bull London Math Soc, 1990, 22: 457--462
[10] Korhonen R. An extension of Picard's theorem for meromorphic functions of small hyper-order. J Math Anal Appl, 2009, 357: 244--253
[11] Li Y H. Uniqueness theorems for meromorphic functions of order less than one. Northeast Math, 2000, 16: 411--416
[12] Li S, Gao Z S. Entire functions sharing one or two fiite values CM with their shifts or difference operators. Arch Math, 2011, 97: 475--483
[13] Liu K, Qi X G. Meromorphic solutions of q-shift difference equations. Ann Polon Math, 2011, 101: 215--225
[14] Nevanlinna R. Le th\'{e}or\`{e}me de Picard-Borel et la th\'{e}orie des fonctions m\'{e}romorphes. Gauthiers-Villars, Paris, 1929
[15] Qi X G, Yang L Z, Liu Y. Nevanlinna theory for the f(qz+c) and its applications. Acta Math Sci, 2013, 33A(5): 819--828
[16] Shibazaki K. Unicity theorem for entire functions of finite order. Mem Nat Defense Acad Japan, 1981, 21: 67--71
[17] Yang C C. On two entire functions which together with their first derivative have the same zeros. J Math Anal Appl, 1976, 56: 1--6
[18] Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions. Dordrecht: Kluwer Academic Publishers, 2003
[19] Yang L Z, Zhang J L. Non-existence of meromorphic solution of a Fermat type functional equation. Aequations Math, 2008, 76: 140--150
[20] Yi H X. Uniqueness theorems for meromorphic functions concerning small functions. Indian J Pure Appl Math, 2001, 32: 903--914 |