[1] Aw A, Rascle M. Resurrection of "second order" models of traffic flow. SIAM J Appl Math, 2000, 60: 916--938
[2] Bouchut F. On zero pressure gas dynamics//Advances in Kinetic Theory and Computing. Ser Adv Math Appl Sci, 22. River Edge, NJ: World Scientific Publishing, 1994: 171--190
[3] Brenier Y, Grenier E. Sticky particles and scalar conservation laws. SIAM J Numer Anal, 1998, 35: 2317--2328
[4] Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1--121
[5] Chen G Q, Liu H. Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids.SIAM J Math Anal, 2003, 34: 925--938
[6] Chen G Q, Liu H. Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for
nonisentropic fluids. Phys D, 2004, 189: 141--165
[7] Cheng H, Yang H. Riemann problem for the relativistic Chaplygin Euler equations. J Math Anal Appl, 2011, 381: 17--26
[8] Danilov V G, Shelkovich V M. Dynamics of propagation and interaction of δ-shock waves in conservation law systems.
J Differential Equations, 2005, 211: 333--381
[9] Garavello M, Piccoli B. Traffic flow on a road network using the Aw-Rascle model. Comm Partial Differential Equations,
2006, 31: 243--275
[10] Greenberg J M. Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J Appl Math, 2001, 62: 729--745
[11] Greenberg J M, Klar A, Rascle M. Congestion on multilane highways. SIAM J Appl Math, 2003, 63: 818--833
[12] Guo L H, Sheng W C, Zhang T. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun Pure Appl Anal, 2010, 9: 431--458
[13] Hayes B T, LeFloch P G. Measure solutions to a strictly hyperbolic system of conservation laws. Nonlinearity, 1996, 9: 1547-1563
[14] Herty M, Rascle M. Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Anal, 2006, 38: 595--616
[15]}Huang F. Weak solution to pressureless type system. Comm in Partial Differential Equations, 2005, 30: 283-304
\REF{
[16] Huang F, Wang Z. Well posedness for pressureless flow. Comm Math Phys, 2001, 222: 117--146
[17] Keyfitz B L, Kranzer H C. Spaces of weighted measures for conservation laws with singular shock solutions. J Differential Equations, 1995, 118: 420--451
[18] Korchinski D J. Solution of a Riemann problem for a 2×2 system of conservation laws possessing no classical weak solution [D]. Garden City, NY: Adelphi University, 1977
[19] Li J, Yang S, Zhang T. The Two-Dimensional Riemann Problem in Gas Dynamics//Brezis H. Pitman Monogr Surv Pure Appl Math 98. London: Longman Scientific and Technical, 1998
[20] Moutari S, Rascle M. A hybrid Lagrangian model based on the Aw-Rascle traffic flow model. SIAM J Appl Math, 2007, 68: 413--436
[21] Pan L, Han X. The Aw-Rascle traffic model with Chaplygin pressure. J Math Anal Appl, 2013, 401: 379--387
[22] Shandarin S F, Zeldovich Y B. The large-scale structure of the universe: turbulence, intermittency, structures in a selfgravitating medium. Rev Mod Phys, 1989, 61: 185--220
[23] Shen C, Sun M. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions
to the perturbed Aw-Rascle model. J Differential Equations, 2010, 249: 3024--3051
[24] Sheng W, Zhang T. The Riemann problem for the transportation equations in gas dynamics. Mem Amer Math Soc,
1999, 137(654)
[25] Sun M. Interactions of elementary waves for the Aw-Rascle model. SIAM J Appl Math, 2009, 69: 1542-1558
[26] Tan D, Zhang T, Zheng Y. Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of
conservation laws. J Differential Equations, 1994, 112: 1--32
[27] Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6: 399--407
[28] Von Karman T. Compressibility effects in aerodynamics. J Aeron Sci, 1941, 8: 337--365
[29] Wang Z, Huang F, Ding X. On the Cauchy problem of transportation equations. Acta Math Appl Sinica (English Ser), 1997, 13: 113--122
[30] Wang Z, Zhang Q. The Riemann problem with delta initial data for the one-dimensional chaplygin gas equations,
Acta Mathematica Scientia, 2012, 32B(3): 825--841
[31] Weinan E, Rykov Y G, Sinai Y G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm Math Phys, 1996, 177: 349--380
[32] Yang H. Riemann problems for a class of coupled hyperbolic systems of conservation laws. J Differential Equations, 1999, 159: 447--484
[33] Yang H, Sun W. The Riemann problem with delta initial data for a class of coupled hyperbolic systems of
conservation laws. Nonlinear Anal, 2007, 67: 3041--3049 |