数学物理学报 ›› 2014, Vol. 34 ›› Issue (5): 1275-1286.

• 论文 • 上一篇    下一篇

亏格一双中心的二次可逆Lotka-Volterra系统的二次扰动

吴奎霖1, 邵仪2   

  1. 1.贵州大学数学系 |贵阳 |550025;
    2.肇庆学院数学系 广东 肇庆 |526061
  • 收稿日期:2013-02-23 修回日期:2013-12-19 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金(11301105, 11201086)、贵州省科学技术基金(黔科合J字[2012]2167)和贵州大学人才引进基金(201104)资助

Quadratic Perturbations of a Quadratic Reversible Lotka-Volterra System of Genus One with Two Centers

吴奎霖1, 邵仪2   

  1. 1.Department of Mathematics, GuiZhou University, |Guiyang 550025;
    2.Department of Mathematics, Zhaoqing University, Guangdong |Zhaoqing 526061
  • Received:2013-02-23 Revised:2013-12-19 Online:2014-10-25 Published:2014-10-25
  • Supported by:

    国家自然科学基金(11301105, 11201086)、贵州省科学技术基金(黔科合J字[2012]2167)和贵州大学人才引进基金(201104)资助

摘要:

该文研究在二次扰动下, 亏格一双中心的二次可逆Lotka-Volterra系统周期环域产生极限环的个数问题. 证明在二次扰动下, 二次可逆Lotka-Volterra系统(rlv5)的周期环域产生极限环的个数不超过3.

关键词: 可逆Lotka-Volterra系统, Abel 积分,  极限环

Abstract:

This paper is concerned with limit cycles which bifurcate from period annulus of a quadratic reversible Lotka-Volterra system of genus one with two centers. We prove that the number of limit cycles of two period annulus of the quadratic reversible Lotka-Volterra system(rlv5) under quadratic perturbations is less or equal to three.

Key words: Reversible Lotka-Volterra system, Abelian integral, Limit cycle

中图分类号: 

  • 34C05