数学物理学报 ›› 2014, Vol. 34 ›› Issue (5): 1093-1103.

• 论文 • 上一篇    下一篇

与非光滑核的奇异积分算子的Toeplitz算子的λ-中心BMO估计

陈冬香|房裕达   

  1. 江西师范大学 数学与信息科学学院 南昌 330022
  • 收稿日期:2013-03-11 修回日期:2014-04-30 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金(11326092, 11261023)、江西省自然科学基金(20122BAB201011)和江西省教育厅基金(GJJ1223)资助.

λ-Center BMO Estimates for the Toeplitz Operator Related to Singular Integral Operator with Non-smooth Kernels

 CHEN Dong-Xiang, FANG Yu-Da   

  1. Department of Mathematics, Jiangxi Normal University, Nanchang 330022
  • Received:2013-03-11 Revised:2014-04-30 Online:2014-10-25 Published:2014-10-25
  • Supported by:

    国家自然科学基金(11326092, 11261023)、江西省自然科学基金(20122BAB201011)和江西省教育厅基金(GJJ1223)资助.

摘要:

LL2(Rn)上的一个解析半群的无穷小生成元,核函数满足高斯上界. L-α/2}(0<α<n)是由L生成的广义分数次积分算子,
Tj,1是与L有关的带有非光滑核的奇异积分算子, 或Tj,1=I, Tj,2Tj,4是线性算子且具有Bp, λ, Bp,λ有界性(1<p<∞, λR), Tj,3I, (j=1, 2, …, m), 其中I为恒等算子, Mb是乘法算子. 当b∈CBMOp2,λ2函数时, 证明Toeplitz型算子θbαBp1, λ1Bq, λ上的有界算子, 并由此得广义分数次积分交换子[b , L-α/2]和非光滑核的奇异积分交换子[b, T]在中心Morrey型空间上的有界性.

关键词: Toeplitz算子, 广义的分数次积分, 带有非光滑核的奇异积分,  λ -中心BMO空间

Abstract:

Let L be the infinitesimal generator of analytic semigroup on L2(Rn) with Gaussian kernel bounds, and L-α/2 be the general fractional integrals generated by L for 0<α<n. Let Tj,1 be the singular integral with non smooth kernel related to L, or Tj,1=I,Tj,2,Tj,4 be the linner operators, which are bounded on Lp(Rn) for 1<p<∞, and Tj,3I(j=1,2…, m), where I is the identity operator, Mb is a multiplication operator.  the authors prove that when  b∈CBMOp2,λ2, the Toeplitz-type operator
 θbα is bounded from Bp1, λto Bp1, λ1. As applications, the boundedness of the general fractional integral commutator
[b , L-α/2] on center Morrey space and that of the commutator of singular integral operator with non-smooth kernel [b, T] on center Morrey space are established.

Key words: Toeplitz type operator, Generalized fractional integral, Singular integral with nonsmooth kernel, λ-CBMO space

中图分类号: 

  • 42B25