数学物理学报 ›› 2014, Vol. 34 ›› Issue (5): 1104-1110.

• 论文 • 上一篇    下一篇

二阶半线性奇摄动边值问题的渐近解

刘帅|沈建和|周哲彦   

  1. 福建师范大学 数学与计算机科学学院 |福州 350007
  • 收稿日期:2013-04-03 修回日期:2014-06-30 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金(11201072, 11102041)资助.

Asymptotic Solution for Second-order Semilinear Singularly Perturbed Boundary Value Problems

 LIU Shuai, CHEN Jian-He, ZHOU Zhe-Yan   

  1. School of Mathematics and Computer Science, Fujian Normal |University, Fuzhou 350007
  • Received:2013-04-03 Revised:2014-06-30 Online:2014-10-25 Published:2014-10-25
  • Supported by:

    国家自然科学基金(11201072, 11102041)资助.

摘要:

研究不满足法向双曲条件的二阶半线性非自治奇摄动Dirichlet边值问题. 首先, 利用边界层函数法, 构造了问题在两个区间端点
的代数边界层, 获得了形式渐近解; 接着, 利用上下解方法, 证明了解的存在性、渐近解的一致有效性以及渐近解与精确解之间的误差估计. 研究表明: 通过对奇异摄动参数进行适当的尺度变换, 一定条件下可处理任意退化的二阶半线性非自治奇摄动边值问题. 最后, 通过一个典型例子验证了理论结果的正确性.

关键词: 边界层函数法, 代数边界层, 渐近解

Abstract:

This paper considers second-order semi-linear non-autonomous singularly perturbed boundary value problem under the non-hyperbolic condition. Firstly, we construct the algebraic decay boundary layers by using the method of boundary layer functions. Hence, we obtain the uniformly valid asymptotic solution. Then, based on the obtained asymptotic solution, we define a couple of upper and lower solutions suitably, and prove the existence of solutions, the uniform validity of the asymptotic solution as well as the error estimate between the asymptotic and the exact solutions. Finally, a typical example is performed to verify the correctness of the theoretical result.

Key words: Boundary function method, Algebraic decay, Asymptotic solutions

中图分类号: 

  • 34E15