[1] Bresch D, Desjardins B. Existence of global weak solutions for 2D viscous shallow water equations. Commun Math Phys, 2003, 238: 211--223
[2] Bresch D, Desjardins B, M\'{e}tivier G. Recent Mathematical Results and Open Problems About Shallow Water Equations. Basel-Boston: Birkauser, 2007
[3] Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (New Series), 2007, 2(4): 851--892
[4] Donatelli D. Local and global existence for the coupled Navier-Stokes-Poission problem. Quart Appl Math, 2003, 61: 345--361
[5] Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135--148
[6] Ducoment B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190--1198
[7] Guo Z, Li H -L, Xin Z. Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations. Commun Math Phys, 2012, 309: 371--412
[8] Hao C, Li H. Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions.
J Differ Equ, 2009, 246: 4791--4812
[9] Jiang S, Xin Z, Zhang P. Global weak solutions to 1D compressible sentropic Navier-Stokes equations with density-dependent viscosity. Metheod and Applications of Anal, 2005, 12: 239--252
[10] Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247: 203--224
[11] Ladyz\v{e}nskaja O A, Solonnikov V A, Ural\'{}ceva N N. Linear and Quasilinear Equations of Parabolic ype//Translated from the Russian by Smith S. Translations of Mathematical Monographs, Vol 23. Providence, RI: American Mathematical Society, 1968
[12] Lian R, Guo Z, Li H -L. Dynamical behaviors of vacuum states for 1D compressible Navier-Stokes equations. J Differ Equ, 2010, 248: 1926--1954
[13] Lian R, Li M. Stability of weak solutions for the compressible Navier-Stokes-Poisson equations. Acta Math Applicatae Sin, 2012, 28(3): 597--606
[14] Li H -L, Li J, Xin Z -P. Vanishing of vacuum states and blow up phenomena of the compressible Navier-Stokes equations. Commun Math Phys, 2008, 281: 401--444
[15] Li H -L, Yang T, Zou C. Time asymptotic behavior of bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B(6): 1721--1736
[16] Li H -L, Matsumura A, Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Ration Mech Anal, 2010, 196: 681--713
[17] Liu J. Local existence of solution to free boundary value problem for compressible Navier-Stokes equations. Acta Math Sci, 2012, 32B(4): 1298--1320
[18] Liu J, Lian R. Global existence of solution to free boundary value problem for Bipolar Navier-Stokes-Poisson system.
Electronic Journal of Differential Equations, 2013, 2013(200): 1--15
[19] Hsiao L, Li H, Yang T, Zou C. Compressible non-isentropic bipolar Navier-Stokes-Poisson system in R3. Acta Math Sci, 2011, 31B(6): 2169--2194
[20] Lin Y, Hao C, Li H. Global well-posedness of compressible bipolar compressible Navier-Stokes-Poisson equations.
Acta Math Sini, 2012, 28(5): 925--940
[21] Mellet A, Vasseur A. On the barotropic compressible Navier-Stokes equations. Commun Partial Differ Eqs, 2007, 32: 431--452
[22] Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations.
Comm Partial Differ Equ, 2006, 31: 571--591
[23] Zou C. Large time behaviors of the isentropic bipolar compressible Navier-Stokes-Poisson system. Acta Math Sci, 2011, 31B(5): 1725--1740
[24] Zhang Y, Tan Z. On the existence of solution to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007, 30(3): 305--329 |