[1] Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72: 341--366
[2] Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J Math Phys, 1986, 27: 1271--1283
[3] Casazza P G. The art of frame theory. Taiwanese J Math, 2000, 4(2): 129--201
[4] Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkh\"{a}user, 2003
[5] Garc\'{\i}a A G, P\'{e}rez-Villal\'{o}n G, Portal A. Riesz bases in L2(0,1) related to sampling in shift-invariant spaces.
J Math Anal Appl, 2005, 308: 703--713
[6] Zalik R A. Riesz bases and multiresolution analyses. Appl Comput Harmon Anal, 1999, 7: 315--331
[7] Fornasier M. Quasi-orthogonal decompositions of structured frames. J Math Anal Appl, 2004, 289: 180--199
[8] Holub J R. Pre-frame operators, Besselian frame, and near-Riesz bases in Hilbert spaces. Proc Amer Math Soc, 1994, 122: 779--785
[9] Li S, Ogawa H. Pseudo frames for subspaces with application. J Fourier Anal Appl, 2004, 10: 409--431
[10] Casazza P G, Kutyniok G. Frames of Subspaces in: Wavelets, Frames and Operator Theory in: Contemp Math, Vol 345. Providence, RI: Amer Math Soc, 2004: 87--113
[11] Christensen O, Eldar Y C. Oblique dual frames and shift-invariant spaces. Appl Comput Harmon Anal, 2004, 17: 48--68
[12] Sun W. G-frames and g-Riesz bases. J Math Anal Appl, 2006, 322(1): 437--452
[13] Sun W. Stability of g-frames. J Math Anal Appl, 2006, 326(2): 858--868
[14] Bodmann B. Optimal linear transmission by loss-insensitive paket encoding. Appl Comput Harmon Anal, 2007, 22: 274--285
[15] Han D G, Li P T, Meng B, et al. Operator valued frames and structured quantum channels. Sci China Math, 2011,
54(11): 2361--2372
[16] Bodmann B G, Casazza P G, Kutyniok G. A quatitative notion of redundancy for finite frames. Appl Comput Harmon Anal, 2011, 30: 348--362
[17] Khosravi A, Musazadeh K. Fusion frames and g-frames. J Math Anal Appl, 2008, 342: 1068--1083
[18] Ding M L, Zhu Y C. Stability of g-frames. J Fuzhou Univ (Nat Sci Ed), 2007, 35(3): 321--325
[19] Zhu Y C. Characterization of g-frames and g-Riesz bases in Hilbert spaces. Acta Math Sin (English Series), 2008, 24(10): 1727--1736
[20] Wang Y J, Zhu Y C. G-frames and g-frame sequences in Hilbert spaces. Acta Math Sin (English Series), 2008, 25(12): 2093--2106
[21] Li J Z, Zhu Y C. G-Riesz Frames in Hilbert spaces. Sci China Math (in Chinese), 2011, 41(1): 53--68
[22] Li J Z, Zhu Y C. Exact g-frames in Hilbert spaces. J Math Anal Appl, 2011, 374: 201--209
[23] Ding M L, Zhu Y C. G-Besselian frames in Hilbert spaces. Acta Math Sin (English Series), 2010, 26(11): 2117--2131
[24] Abdollahpour M R, Najati A. Besselian G-frames and near G-Riesz bases. Appl Anal Discrete Math, 2011, 5: 259--270
[25] Ding M L, Zhu Y C. Near g-Riesz bases in Hilbert spaces. J Fuzhou Univ (Nat Sci Ed), 2010, 38(5): 623--628
[26] Ding M L. Relations among near g-Riesz bases, near Riesz bases and g-Besselian frames in Hilbert spaces. J Fujian Agriculture and Forestry Univ (Nat Sci Ed), 2010, 39(6): 664--667
[27] Ding M L, Zhu Y C. Exact g-frames in Hilbert spaces. J Fuzhou Univ (Nat Sci Ed), 2010, 38(4): 461--467
[28] Zhu Y C. q-Besselian frames in Banach spaces. Acta Math Sin (English Series), 2007, 23(9): 1707--1718
[29] Taylor A E, Lay D C. Introduction to Functional Analysis. New York: Wiley, 1980 |