[1] Chen Z X. The growth of solutions of f''+ezf'+Q(z)f=0 where the order σ(Q)=1. Science in China (A), 2002, 45(3): 290--300
[2] 陈宗煊. 二阶复域微分方程的不动点与超级. 数学物理学报, 2000, 20(3): 425--432
[3] Chen Z X. On the growth of solutions of a class of class of higher order differential equations. Chin Ann of Math, 2003, 24B(4): 501--508
[4] Chen Z X, Shon K H. The hyper order of solutions of second order differential equations and subnormal solutions of periodic equation. Taiwanese J of Math, 2010, 14(2): 611--628
[5] Chen Z X, Shon K H. Numbers of subnormal solutions for higher order periodic differential equations. Acta Mathematica Sinica, 2011, 27: 1753--1768
[6] Chen Z X, Shon K H. On subnormal solutions of periodic differential equations. Abstract and Applied Analysis, Volume 2010,
[7] Chen Z X, Shon K H. On subnormal solutions of second order linear periodic differential equations. Science in China (A), 2007, 50: 786--800
[8] Gundersen G and Steinbart M. Subnormal solutions of second order linear differential equations with periodic coefficients. Results in Math, 1994, 25: 270--289
[9] Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J London Math Soc, 1988, 37: 88--104
[10] Gundersen G. Finite order solutions of second order linear differential equations. Trans Amer Math Soc, 1988, 305: 415--429
[11] Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964
[12] Laine I. Nevanlinna Theory and Complex Differential Equation. Berlin: W de Gruyter, 1993
[13] Laine I and Rieppo J. Differential polynomials generated by linear differential equations. Complex Var Theory Appl, 2004, 49: 897--911
[14] Wang J and Yi H X. Fixed points and hyper order of differential polynormials generated by solutions of differential equation. Complex Var Theory Appl, 2003, 48: 83--94
[15] Wittich. Subnormale L\"{o}sungen der Differentialgleichung ω''+p(ez)ω'+q(ez)ω=0. Nagoya Math J, 1967, 30: 29--37
[16] 杨乐. 值分布及其新研究.北京:科学出版社,1982
[17] Yi H X, Yang C C. The Uniqueness Theory of Meromorphic Functions.New York: Kluwer Academic Publishwes, 2003
[18] 庄圻泰, 杨重骏. 亚纯函数的不动点与分解理论. 北京: 北京大学出版社, 1988 |