[1] Molchanov A M. The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat Obsh, 1953, 2: 169--200
[2] Briman I. Self-adjointness and spectra of Sturm-Liouville operators. Math Scand, 1959, 7(1): 219--239
[3] Glazman I M. Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Isreal Program for Scientific Translations, Isereal: Jerusalem, 1965
[4] Birman M Sh. The spectrum of singular boundary-value problem. Math Scand, 1961, 55(97): 125--173
[5] M\"{u}ller-Pfeiffer E. Spectral Theory of Ordinary Differential Operators. Chichester: Ellis Horwood, 1981
[6] 孙炯, 王忠. 线性算子的谱分析. 北京: 科学出版社, 2005
[7] 孙炯, 王忠. 常微分算子谱的定性分析. 数学进展, 1995, 24(5): 406--422
[8] 王忠. 一类自伴微分算子谱的离散性. 数学学报, 2001, 44(1): 95--102
[9] 王忠, 孙炯. Euler微分算子谱是离散的充分必要条件. 系统科学与数学, 2001, 21(4): 497--506
[10] 郭占宽, 孙炯. 具有负指数系数的微分算子的谱. 数学学报, 2003, 46(4): 639--648
[11] 郭占宽, 孙炯. 一类具指数系数的对称微分算子的谱及亏指数. 系统科学与数学, 2003, 23(2): 182--189
[12] Jiong Sun, Aiping Wang, Anton Zettl. Continuous spectrum and square-integrable solutions of differential operators with intermediate deficiency index. Journal of Functional Analysis, 2008, 255: 3229--3248
[13] Xiaoling Hao, Jiong Sun, Anton Zettl. Real-parameter square integrable solutions and the spectrum of differential operators.J Math Anal Appl, 2011, 376: 696--712
[14] Xiaoling Hao, Jiong Sun, Anton Zettl. The spectrum of differential operators and square integrable solutions.
Journal of Functional Analysis, 2012, 262: 1630--1644
[15] Weidmann J. Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258, Berin: Springer-Verlag, 1987
[16] Wang Wanyi, Han Maoan, Sun Jiong. On Hopfcyclicity of planar systems with multiple parameters. Applied Mathematics Letters, 2005, 18(6): 613--619 |