[1] Lauffenburger D A, Kennedy C R. Localised bacterial infection in a distributed model for tissue inflammation.
Journal of Mathematical Biology, 1983, 16: 141--163
[2] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26: 399--415
[3] Amann H. Dynamic theory of quasilinear parabolic equations II: Reaction-diffusion systems. Differential Integral Equations, 1990, 3: 13--75
[4] Horstmann D, Winkler M. Boundedness vs blow-up in a chemotaxis system. Journal of Differential Equations, 2005, 215: 52--107
[5] Aida M, Osaki K, Tsujikawa T, et al. Chemotaxis and growth system with singular sensitivity function. Nonlinear Analysis, 2005, 6: 323--336
[6] Chertock A, Kurganov A, Wang X F, et al. On a chemotaxis model with saturated chemotactic flux. Kinetic and Related Models, 2012, 5: 51--95
[7] Wang X F. Qualitative behavior of solutions of chemotactic diffusion system. SIAM Journal on Mathematical Analysis, 2000, 31: 535--560
[8] Wang X F, Wu Y P. Qualitative analysis on a chemotactic diffusion model for two species competion for a limited resource. Quarterly of Applied Mathematics, 2002: 505--531
[9] Levine H A, Sleeman B D. A system of reaction difusion equations arising in the theory of reinforced random walks. SIAM Journal on Mathematical Analysis, 1997, 57: 683--730
[10] Yang Y, Chen H, Liu W. On existence of global solutions and blow-up to a system of the reaction-diffusion equations
modelling chemotaxis. SIAM Journal on Mathematical Analysis, 2001, 33: 763--785
[11] Tello J, Winkler M. A chemotaxis system with logistic source. Communications in Partial Differential Equations, 2007, 32: 849--877
[12] Osaki K, Tsujikawa T, Yagi A, et al. Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Analysis, 2002, 51: 119--144
[13] Qu F L, Wu Y P. The global existence of solutions for two classes of chemotaxis models. (Submitted)
[14] Tao Y S, Wang M. Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity, 2008, 21: 2221--2238
[15] Tao Y S. Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source.
Journal of Mathematical Analysis and Applications, 2009, 354: 60--69
[16] Tao Y S. Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Analysis: Real World Applications, 2011, 12: 418--435
[17] Gabriela L, Cristian M R. Global solutions and asymptotic behavior for a parabolic degenerate coupled system arising from biology. Nonlinear Analysis, 2010, 72: 77--98
[18] Lou Y, Ni W M, Wu Y P. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4: 193--203
[19] Zhai Z C. Global well-posedness for nonlocal fractional Keller-Segel systems in critical Besov spaces. Nonlinear Analysis, 2010, 72: 3173--3189
[20] Wrzosek D. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Analysis, 2010, 73: 338--349
[21] Budrene E O, Berg H C. Complex patterns formed by motile cells of escherichia coli naturem. 1991, 394: 630--633
[22] Murray J D. Mathematical Biology, II, volume 18 of Interdisciplinary Applied Mathematics (third edition). Berlin: Springer Verlag, 2003
[23] Ladyzhenskaja O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type, Translation of Mathematical Monographys, Vol 23. Providence, RI: American Methematical Society, 1968
[24] Friedman A. Partial Differential Equations. New York: Holt, Rinehart & Winston, 1969
[25] Temam R. Infinite Dimensional Dynamical Systems on Mechanics and Physics. New York: Springer Verlag, 1998 |