数学物理学报 ›› 2014, Vol. 34 ›› Issue (2): 419-425.

• 论文 • 上一篇    下一篇

一类平面三次拟齐次向量场的全局拓扑结构

黄改改1, 冯光庭2, 张兴安1   

  1. 1.华中师范大学 数学与统计学学院 武汉 |430079|
    2.湖北第二师范学院 数学与统计学院 武汉 |430205
  • 收稿日期:2012-10-30 修回日期:2013-11-18 出版日期:2014-04-25 发布日期:2014-04-25
  • 基金资助:

    国家自然科学基金(11071275)、中央高校专项基金(CCNU10B01005)和湖北省自然科学基金(2013CFB013)资助.

A Global Topological Structure of a Class of Cubic Quasi-Homogeneous Vector Fields

 HUANG Gai-Gai1, FENG Guang-Ting2, ZHANG Xing-An1   

  1. 1.School of Mathematics and Statistics, Central China Normal University, Wuhan 430079|
    2.School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205
  • Received:2012-10-30 Revised:2013-11-18 Online:2014-04-25 Published:2014-04-25
  • Supported by:

    国家自然科学基金(11071275)、中央高校专项基金(CCNU10B01005)和湖北省自然科学基金(2013CFB013)资助.

摘要:

利用中心投影变换的思想证明一类平面三次拟齐次向量场的几何性质依赖于它的切向量场和诱导向量场. 讨论了该系统的拓扑结构,并进行了分类; 证明了该系统具有25类不同类的拓扑结构相图.

关键词: 拟齐次向量场, 切向量场, 不变直线, 全局拓扑分类

Abstract:

In this paper,we use the idea of the central projection transformation to prove that the geometric properties of a class of cubic vector field depends on its tangent vector and induced vector field. We investigate its topological structures and classified, and we obtain 25 types of different topological classification of this vector field.

Key words: Quasi-homogeneous vector field, Tangent vector field, Invariant line, Global topological classification

中图分类号: 

  • 34C05