[1] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math, 1990, 18: 18--56
[2] Agarwal R P, Grace S R, O'Regan D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and
Sublinear Dynamic Equations. Dordrecht: Kluwer Academic, 2002
[3] Agarwal R P, Bohner M, Grace S R, et al. Discrete Oscillation Theory. New York: Hindawi Publishing Corporation, 2005
[4] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhauser, 2001
[5] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhauser,2003
[6] Agarwal R P, Bohner M, O'Regan D, et al. Peterson, Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141: 1--26
[7] Bohner M, Saker S H. Oscillation of second order nonlinear dynamic equations on time scales. Rocky Mountain J Math, 2004, 34: 1239--1254
[8] Erbe L. Oscillation criteria for second order linear equations on a time scale. Can Appl Math Q, 2001, 9: 345--375
[9] Erbe L, Peterson A, Rehák P. Comparison theorems for linear dynamic equations on time scales. J Math Anal Appl, 2002, 275: 418--438
[10] Sun S, Han Z, Zhang C, Oscillation of second order delay dynamic equations on time scales. J Appl Math Comput, 2009, 30: 459--468
[11] Grace S R, Agarwal R P, Kaymakcalan B, et al. Oscillation theorems for second order nonlinear dynamic equations.
J Appl Math Comput, 2010, 32: 205--218
[12] Agarwal R P, Bohner M, Saker S H. Oscillation of second order delay dynamic equations. Can Appl Math Q, 2005, 13: 1--18
[13] Sahiner Y. Oscillation of second order delay differential equations on time scales. Nonlinear Anal TMA, 2005, 63: 1073--1080
[14] Saker S H. Oscillation criteria of second-order half-linear dynamic equations on time scales. J Comput Appl Math, 2005, {\bf 177}: 375--387
[15] Erbe L, Peterson A, Saker S H. Oscillation criteria for second order nonlinear delay dynamic equations. J Math Anal Appl, 2007, 333: 505--522
[16] Erbe L, Hassan T S, Peterson A. Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. J Difference Equ Appl, 2009, 15(11/12): 1097--1116
[17] Grace S R, Bohner M, Agarwal R P. On the oscillation of second-order half-linear dynamic equations. J Difference Equ Appl, 2009, 15(5): 451--460
[18] Agarwal R P, Bohner M, Li W T. Nonoscillation and Oscillation: Theory for Functional Differential Equations. New York:Marcel Dekker, 2004.
[19] Tuna A, Kutukcu S. Some integral inequalities on time scales. Applied Mathematics and Mechanics, 2008, 29(1): 23--29
[20] Bohner M. Some oscillation criteria for first order delay dynamic equations. Far East J Appl Math, 2005, 18(3): 289--304
[21] Zhang Q X. Oscillation of second-order half-linear delay dynamic equations with damping on time scales. Journal of Computational and Applied, 2011, 235: 1180--1188
[22] 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(II). 中国科学: 数学, 2011, 41(10): 885--896
[23] 杨甲山. 时间测度链上一类具阻尼项的二阶动力方程的振动准则. 上海交通大学学报, 2012, 46(9): 1529--1533
[24] 欧柳曼, 朱思铭.时标动力方程的稳定性分析. 数学物理学报,2008, 28A(2): 308--319
[25] 杨甲山. 时间测度链上具非线性中立项的二阶动力方程的振动性. 中国科学院研究生院学报, 2012, 29(6): 731--737
[26] 李同兴, 韩振来, 张承慧, 等.时间尺度上三阶Emden-Fowler动力方程的振动准则. 数学物理学报,2012, 32A(1): 222--232 |