数学物理学报 ›› 2014, Vol. 34 ›› Issue (2): 378-392.

• 论文 • 上一篇    下一篇

基于尺度中心路径的求解SCLP的非单调光滑牛顿算法

倪铁1, 刘晓红2   

  1. 1.辽宁工程技术大学 工商管理学院 辽宁 葫芦岛 125105;
    2.天津大学理学院数学系 天津 300072
  • 收稿日期:2012-03-06 修回日期:2013-09-18 出版日期:2014-04-25 发布日期:2014-04-25
  • 基金资助:

    国家自然科学基金(10471126, 10371109)、浙江省自然科学基金(101016)和浙江省哲学社会科学规划常规性课题(06CGYJ21YBQ)资助.

Non-Monotone Smoothing Newton Algorithm for SCLP Based on a Scaled Central Path

 NI Tie1, LIU Xiao-Hong2   

  1. 1.College of Business Administration, Liaoning Technical University, Liaoning Huludao 125105;
    2.Department of Mathematics, School of Science, Tianjin University, Tianjin 300072
  • Received:2012-03-06 Revised:2013-09-18 Online:2014-04-25 Published:2014-04-25
  • Supported by:

    国家自然科学基金(10471126, 10371109)、浙江省自然科学基金(101016)和浙江省哲学社会科学规划常规性课题(06CGYJ21YBQ)资助.

摘要:

基于CHKS光滑函数的修改性版本, 该文提出了一个带有尺度中心路径的求解对称锥线性规划(SCLP)的非单调光滑牛顿算法. 通过应用欧氏若当代数理论, 在适当的假设下, 证明了该算法是全局收敛和超线性收敛的. 数值结果表明了算法的有效性.

关键词: 线性规划, 对称锥, 欧氏若当代数, 光滑算法, 尺度中心路径, 非单调线搜索

Abstract:

Based on a modified version of the Chen-Harker-Kanzow-Smale (CHKS) smoothing function, this paper investigates a non-monotone smoothing Newton algorithm with a scaled central path for solving linear programming over symmetric cones (SCLP). By using the theory of Euclidean Jordan algebras, we show that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. Some preliminary numerical results is shown that our algorithm proposed is promising.

Key words: Linear programming, Symmetric cone, Euclidean Jordan algebra, Smoothing algorithm, Scaled central path, Non-monotone line search

中图分类号: 

  • 90C05