[1] Faraut J, Kor\'{a}nyi A. Analysis on Symmetric Cones. Oxford Mathematical Monographs. New York: Oxford University Press, 1994
[2] Faybusovich L. Euclidean Jordan algebras and interior-point algorithms. Positivity, 1997, 1(4): 331--357
[3] Faybusovich L, Tsuchiya T. Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank. Mathematical Programming, 2003, 97(3): 471--493
[4] Schimieta S H, Alizadeh F. Associative and Jordan algebras, and polynomial time interior-point algirithms for symmetric cones. Mathematics of Operations Research, 2001, 26(3): 543--564
[5] Schimieta S H, Alizadeh F. Extension of primal-dual interior-point algirithms to symmetric cones. Mathematical Programming, 2003, 96(3): 409--438
[6] Liu X H, Huang Z H. A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones. Mathematical Methods of Operations Research, 2009, 70(2): 385--404
[7] Liu X H, Ni T. Smoothing Newton algorithm for linear programming over symmetric cones. Transactions of Tianjin University, 2009, 15(3): 216--221
[8] Kor\'{a}nyi A. Monotone functions on formally real Jordan algebras. Mathematische Annalen, 1984, 269(1): 73--76
[9] Yuan Y X. A scaled central path for linear programming. Journal of Computational Mathematics, 2001, 19(1): 35--40
[10] Chen B, Harker P T. Smooth approximations to nonlinear complementarity problem. SIAM Journal on Optimization, 1997, 7(2): 403--420
[11] Wang Q G, Zhao J L, Yang Q Z. Some non-interior path-following methods based on a scaled central path for linear complementarity problems. Computational Optimization and Applications, 2010, 46(1): 31--49
[12] Chen B, Harker P T. A non-interior-point continuation method for linear complementarity problem. SIAM Journal on Matrix Analysis and Applications, 1993, 14(4): 1168--1190
[13] Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 1996, 17(4): 851--868
[14] Smale S. Algorithms for Solving Equations. In: Proceeding of International Congress of Mathematicians, edited by Gleason, A. M., Providence, Rhode Island: American Mathematics Society, 1987: 172--195
[15] Huang Z H, Ni T. Smoothing algorithms for complementarity problems over symmetric cones. Computational Optimization and Applications, 2010, 45(3): 557--579
[16] Gowda M S, Sznajder R, Tao J. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra and Its Applications, 2004, 393(1): 203--232
[17] Yoshise A. Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM Journal on Optimization, 2006, 17(4): 1129--1153
[18] Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems. Mathematical Programming, 2000, 87(1): 1--35
[19] Huang Z H, Sun D, Zhao G Y. A smoothing Newton-type algorithm of stronger convergence for the quadratically constrained convex quadratic programming. Computational Optimization and Applications, 2006, 35(2): 199--237
[20] Huang Z H, Xu S W. Convergence properties of a non-interior-point smoothing algorithm for the P* NCP. Journal of Industrial Management Optimization, 2007, 3(3): 596--584
[21] Huang Z H, Zhang Y, Wu W. A smoothing-type algorithm for solving system of inequalities. Journal of Computational and Applied Mathematics, 2008, 220(1/2): 355--363
[22] Ni T, Wang P. A smoothing-type algorithm for solving nonlinear complementarity problems with a non-monotone line search. Applied Mathematics and Computation, 2010, 216(7): 2207--2214
[23] Mifflin R. Semismooth and semiconvex functions in constraint optimization. SIAM Journal on Control and Optimization, 1977, 15(6): 957--972
[24] Qi L, Sun J. A nonsmooth version of Newton's method. Mathematical programming, 1993, 58(1/3): 353--367
[25] Qi L. Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 1993, 18(1): 227--253
[26] Sun D, Sun J. Semismooth matrix valued functions. Mathematics of Operations Research, 2002, 27(1): 150--169
[27] Sun D, Sun J. L\"owner's operator and spectral functions in Euclidean Jordan algebras. Mathematics of Operations Research, 2008, 33(2): 421--445
[28] Toh K C, T\"ut\"unc\"u R H, Todd M J. On the implementation and usage of SDPT3 - a MATLAB software package for
semidefinite-quadratic-linear programming, version 4.0, Jul 2006, available from http://www. math.nus.edu.sg/mattohkc/guide4-0-draft.pdf.
[29] Zhang H C, Hanger W W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 2004, 14(4): 1043--1056
[30] Huang Z H, Liu X H. Extension of smoothing Newton algorithms to solve linear programming over symmetric cones. Journal of Systems Science and Complexity, 2011, 24(1): 195--206 |