[1] Lin F. Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789--814
[2] Lin F, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 1995, XLV III: 501--537
[3] Lin F, Liu C. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. DCDS, 1996, 2: 1--23
[4] Lin F, Liu C. Existence of solutions for the Ericksen-Leslie system. Arch Rational Mech Anal, 2000, 154: 135--156
[5] Coutand D, Shkoller S. Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals. C R Acad Sci Paris, Srie I, 2001, 333: 919--924
[6] Liu C, Shen J. On liquid crystal flows with free-slip boundary conditions. Discrete and Continuous Dynamic Systems, 2001, 7: 307--318
[7] Blanca C E, Francisco G G, Marko R M. Reproductivity for a nematic liquid crystal model. Z angew Math Phys, 2006, 53: 984--998
[8] Liu X, Zhang Z. Lp existence of the flow of liquid crystals system. Chinese Annals of Mathematics, 2009, 30A: 1--20
[9] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Mathematical Methods in the Applied Sciences, 2009, 32: 2243--2266
[10] Xu J, Tan Z. Global existence of the finite energy weak solutions to a nematic liquid crystals model. Mathematical Models and Methods in Applied Sciences, 2011, 34: 929--938
[11] Wang D, Yu C. Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch Rational Mech Anal, 2012, 204: 881--915
[12] Duan Z W, Han S X, Zhou L. Boundary layer asymptotic behavior of incompressible Navier-Stokes equation in a cylinder with small viscosity. Acta Mathematica Scientia, 2008, {\bf 28}(3): 449--720
[13] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock. Acta Mathematica Scientia, 2008, 28(4): 727--748
[14] Li H L, Yang T, Zhou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Mathematica Scientia, 2009, 29(6): 1721--1736
[15] Chen G Q, Dan O, Qian Z M. The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundary. Acta Mthematica Scientia, 2009, 29(4): 919--948
[16] Qi Y M, Song J P. Maximal attractors for the compressible Navier-Stokes equations of viscous and heat conductive fluid. Acta Mathematica Scientia, 2010, 30(1): 289--311
[17] Cai X J, Lei L H. L2 decay of the incompressible Navier-Stokes equations with damping. Acta Mathematica Scientia, 2010, 30(4): 1235--1248
[18] Luisa C. Partical regularity for the Navier-Stokes-Fourier system. Acta Mathematica Scientia, 2011, 31(5): 1653--1670
[19] Hsiao L, Li H L, Yang T, Zou C. Comressible non-isentropic bipolar Navier-Stokes-Poisson system in R3. Acta Mathematica Scientia, 2011, 31(6): 2169--2194
[20] Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multi-dimen sions. Acta Mathematica Scientia, 2012, 32(5): 1681--1702
[21] Mohamed A A, Jiang F, Tan Z. Decay estimates for isentropic compressible magnetohydrodynamic equations in bounded damain. Acta Mathematica Scientia, 2012, 32(6): 2211--2220
[22] Guo R C, Jiang F, Yin J P. A note on complete bounded trajectories and attractors for compressible self-gravitating fluids. Nonlinear Analysis-Theory Methods & Applications, 2012, 75(4): 1933--1944
[23] Duan R, Jiang F, Jiang S. On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows. Siam Journal on Applied Mathematics, 2012, 71(6): 1990--2013
[24] Jiang F, Tan Z. Blow-up of viscous compressible reactive self-gravitating gas. Acta Mathematicae Applicatae Sinica-English Series, 2012, 28(2): 401--408
[25] Chang K C, Ding W Y, Ye R. Finite-time blow-up of the heat flow of harmonic maps from surfaces. Journal of Differential Geometry, 1992, 2: 507--515
[26] Wen H, Ding S. Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Analysis: Real World Applications, 2011, 12: 1510--1531
[27] Lin F, Lin J, Wang C. Liquid crystal flows in two dimensions. Arch Rational Mech Anal, 2011, 197: 297--336
[28] Lions P. Mathematical Topics in Fluid Mechanics: Incompressible models. New York: Oxford University Press, 1996
[29] Novotn\`{y} A, Stra\v{s}kraba I. Introduction to the Mathematical Theory of Compressible Flow. New York: Oxford University Press, 2004
[30] Jiang F, Tan Z. On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional
compressible flow. Math Meth Appl Sci, 2009, 32: 2350--2367
[31] Jiang F, Tan Z. On radially symmetric solutions of the compressible isentropic self-gravitating fluid. Nonlinear Analysis: TMA, 2010, 72: 3463--3483 |