[1] Wadati M, Sogo K. Gauge transformations in soliton theory. J Phys Soc Jpn, 1983, 52: 394--398
[2] Fukuyama T, Kamimura K, Kresic-Juric S, Meljanac S.Gauge transformations and symmetries of integrable systems. J Phys A, 2007, 40: 12227--12241
[3] Zakharov V E, Takhtadzhyan L A. Equivalence of the nonlinear Schr\"{o}dinger equation and Heisenberg's ferromagnetic equation. Teor Mat Fiz, 1979, 38: 26--35
[4] 陈登远. 孤子引论. 北京:科学出版社, 2006
[5] Ning T K, Zhang W G, Chen D Y. Gauge transform between the first order nonisospectral AKNS hierarchy and AKNS hierarchy. Chaos, Solitons and Fractals, 2007, 34: 704--708
[6] Ishimori Y. A relationship between the Ablowitz-Kaup-Newell-Segur and Wadati-Konno-Ichikawa schemes of the inverse scattering method. J Phys Soc Jpn, 1982, 51: 3036--3041
[7] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53: 249--315
[8] Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schr\"{o}dinger equation. J Math Phys, 1978, 19: 798--801
[9] Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J Phys Soc Jpn, 1979, 47: 1698--1700
[10] Zeng Y B, Chen D Y, Li Y S. On the transformation of the potentials, integrable evolution equations and B\"{a}cklund transformations. Chin Ann Math B, 1985, 6(4): 385--393
[11] Chen D Y, Li Y S, Zeng Y B. Transformation operator between recursion operators of B\"{a}cklund transformations (I). Sci Sin A, 1985, 9(1): 907--922
[12] Schlegel M, Knoth O, Arnold M, Wolke R. Multirate Runge-Kutta schemes for advection equations. J Comput Appl Math, 2009, 226: 345--357
[13] Fan T H, Xie B, Tuinier R. Asymptotic analysis of tracer diffusivity in nonadsorbing polymer solutions. Phys Rev E,
2007, 76: 051405: 1--13
[14] Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schr\"{o}dinger equation. J Phys A,
2003, 36: 1931--1946
[15] Vekslerchik V E. The Davey-Stewartson equation and the Ablowitz-Ladik hierarchy. Inverse Problems, 1996, 12: 1057--1074
[16] Ma W X. An approach for constructing nonisospectral hierarchies of evolution equations. J Phys A, 1992, 25: L719--L726
[17] Chen H H, Liu C S. Solitons in nonuniform media. Phys Rev Lett, 1976, 37: 693--697
[18] Gordoa P R, Pickering A, Zhu Z N. A 2+1 non-isospectral integrable lattice hierarchy related to a generalized discrete second Painlev\'{e} hierarchy. Chaos, Solitons and Fractals, 2006, 29: 862--870
[19] Sun Y P, Tam H W. A hierarchy of non-isospectral multi-component AKNS equations and its integrable couplings. Phys Lett A, 2007, 370: 139--144
[20] Vinoj M N, Kuriakose V C, Porsezian K. Optical soliton with damping and frequency chirping in fibre media. Chaos, Solitons and Fractals, 2001, 12: 2569--2575
[21] Uthayakumar A, Han Y G, Lee S B. Soliton solutions of coupled inhomogeneous nonlinear Schr\"{o}dinger equation in plasma. Chaos, Solitons and Fractals, 2006, 29: 916--919
[22] Ning T K, Chen D Y, Zhang D J. The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering transform. Physica A, 2004, 339: 248--266
[23] Kundu A. Integrable nonautonomous nonlinear Schr\"{o}dinger equations are equivalent to the standard autonomous equation. Phys Rev E, 2009, 79: 015601(R): 1--4 |