[1] Akrivis G D, Dougalis V A, Karakashian O A, Mckinney W R. Numerical Approximation of Singular Solution of the Damped Nonlinear Schr\"{o}dinger Equation. ENUMATH'97 (Heidelberg), River Edge, NJ: World Scientific, 1998
[2] Barashenkov I V, Alexeeva N V, Zemlianaya E V. Two- and three-dimensional oscillons in nonlinear Faraday resonance. Phys Rev Lett, 2002, 89: 104101-4
[3] Cazenave T. Semilinear Schr\"{o}dinger Equations. Courant Lecture Notes in Mathematics 10. University, Courant Institute of Mathematical Sciences, New York; Providence, RI: American Mathematical Society, 2003
[4] Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schr\"{o}dinger equations. Comm Math Phys, 1982, 85: 549--561
[5] Chen G, Zhang J, Wei Y. A small initial data criterion of global existence for the damped nonlinear Schr\"{o}dinger equation. J Phys A: Math Theor, 2009, 42: 055205
[6] Chen J, Guo B. Strong instability of standing waves for a nonlocal Schr\"{o}dinger equation. Physica D, 2007, 227: 142--148
[7] Fibich G. Self-focusing in the damped nonlinear Schr\"{o}dinger equation. SIAM J Appl Math, 2001, 61: 1680--1705
[8] Ginibre J, Velo G. On a class of nonlinear Schr\"{o}dinger equations with nonlocal interaction. Math Z, 1980, 170: 109--136
[9] Goldman M V, K. Rypdal and B. Hafizi, Dimensionality and dissipation in Langmuir collapse. Phys Fluids, 1980, 23: 945--955
[10] Gross E P. Dynamics of interacting bosons//Meeron E, ed. Physics of Many Particle Systems. New York: Gordon and Breech, 1966: 231--406
[11] Kwong M K. Uniequeness of positive solutions of Δu-u+up=0 in Rn. Arch Rat Mech Anal, 1989, 105: 243--266
[12] Lebowitz J L, Rose H A, Speer E R. Statistical mechanics of the nonlinear Schr\"{o}dinger equation. J Stat Phys, 1988, 50: 657--687
[13] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case Part 1 and 2, Ann Inst H Poincar\'{e} Anal Non Lin\'{e}aire, 1984, 1: 109--145; 223--283
[14] Miao C, Xu G, Zhao L. On the blow up phenomenon for the L2-critical focusing Hartree equation in R3. Colloquium
Mathematicum, 2010, 119: 23--50
[15] Ohta M, Todorova G. Remarks on global existence and blowup for damped nonlinear Schr\"{o}dinger equations.
Discrete and Continuous Dynamical Syst, 2009, 23: 1313--1325
[16] Tsutsumi M. Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schr\"{o}dinger equations. SIAM J Math Anal, 1984, 15: 357--366
[17] Tsutsumi Y. L2-solutions for nonlinear Schr\"{o}dinger equations and nonlinear semigroups. Funkcial Ekvac, 1987, 30: 115--125 |