数学物理学报 ›› 2014, Vol. 34 ›› Issue (1): 70-79.

• 论文 • 上一篇    下一篇

可数族弱Bregman相对非扩展映像的收敛性分析

陈加伟1, 万仲平2, 赵烈济3   

  1. 1.西南大学数学与统计学院 重庆 400715;
    2.武汉大学数学与统计学院 武汉 430072|
    3.庆尚国立大学教育学院数学教育系 韩国晋州 660-701
  • 收稿日期:2012-04-19 修回日期:2013-08-17 出版日期:2014-02-25 发布日期:2014-02-25
  • 基金资助:

    国家自然科学基金(71171150)和中央高校基本科研业务专项基金(201120102020004)资助.

Convergence Analysis for Countable Family of Weak Bregman Relatively Nonexpansive Mappings

 CHEN Jia-Wei1, WAN Zhong-Peng2, ZHAO Lie-Ji3   

  1. 1.School of Mathematics and Statistics, Southwest University, Chongqing 400715;
    2.School of Mathematics and Statistics, Wuhan University, Wuhan 430072;
    3.Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Korea
  • Received:2012-04-19 Revised:2013-08-17 Online:2014-02-25 Published:2014-02-25
  • Supported by:

    国家自然科学基金(71171150)和中央高校基本科研业务专项基金(201120102020004)资助.

摘要:

在自反Banach空间中, 引入可数族弱Bregman相对非扩张映像概念, 构造了两种迭代算法求解可数族弱Bregman相对非扩张映像的公共不动点. 在适当条件下, 证明了两种迭代算法产生的序列的强收敛性.

关键词: 强收敛性定理, Bregman距离, Bregman投影, (弱)Bregman相对非扩张映像

Abstract:

A notion of countable family of weak Bregman relatively nonexpansive mappings is introduced in reflexive Banach space. We construct two iterative algorithms for finding a common fixed point of a countable family of weak Bregman relatively nonexpansive mappings in Banach spaces. Finally, the strong convergence of the proposed algorithms are also proved under appropriate conditions.

Key words: Strong convergence theorem, Bregman distance, Bregman projection, (weak) Bregman relatively nonexpansive map

中图分类号: 

  • 47H09