[1] Bregman L M. The relaxation method for finding common points of convex sets and its application to the solution of
problems in convex programming. USSR Comput Math Math Phys, 1967, 7: 200--217
[2] Alber Y I, Butnariu D. Convergence of Bregman projection methods for solving consistent convex feasibility
problems in reflexive Banach spaces. J Optim Theory Appl, 1997, 92: 33--61
[3] Bauschke H H, Borwein J M. Legendre functions and the method of random Bregman projections. J Convex Anal, 1997, 4: 27--67
[4] Bauschke H H, Lewis A S. Dykstra's algorithm with Bregman projections: a convergence proof. Optim, 2000, 48: 409--427
[5] Bauschke H H, Borwein J M, Combettes P L. Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun Contemp Math, 2001, 3: 615--647
[6] Burachik R S. Generalized Proximal Point Methods for the Variational Inequality Problem [D]. Rio de Janeiro: Instituto de Mathematica Pura e Aplicada (IMPA), 1995
[7] Burachik R S, Scheimberg S. A proximal point method for the variational inequality problem in Banach spaces.
SIAM J Control Optim, 2000, 39: 1633--1649
[8] Butnariu D, Iusem A N. Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization.
Applied Optimization, Vol 40. Dordrecht: Kluwer Academic, 2000
[9] Butnariu D, Iusem A N, Zalinescu C. On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces. J Convex Anal, 2003, 10: 35--61
[10] Butnariu D, Resmerita E. Bregman distances, totally convex functions, and a method for solving operator
equations in Banach spaces. Abstr Appl Anal, 2006, 2006: 1--39
[11] Eckstein I. Nonlinear proximal point algorithms using Bregman function, with applications to convex programming.
Math Oper Res, 1993, 18: 202--226
[12] Kiwiel K C. Proximal minimization methods with generalized Bregman functions. SIAM J Control Optim, 1997, 35: 1142--1168
[13] Resmerita E. On total convexity, Bregman projections and stability in Banach spaces. J Convex Anal, 2004, 11: 1--16
[14] Reich S, Sabach S. A strong convergence theorem for a proximal-type algorithm in reflexive Bnanch spaces. J Nonlinear Convex Anal, 2009, 10: 471--485
[15] Reich S, Sabach S. Two strong convergence theorems for a proximal method in reflexive Bnanch spaces. Numer Funct Anal Optim, 2010, 31: 22--44
[16] Reich S, Sabach S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Bnanch spaces. Nonlinear Anal, 2010, 73: 122--135
[17] Reich S, Sabach S. Existence and Approximation of Fixed Points of Bregman Firmly Nonexpansive Mappings in Reflexive Banach Spaces. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. New York: Springer, 2011: 299--314
[18] Reich S, Sabach S. A projection method for solving nonlinear problems in reflexive Bnanch spaces. J Fixed Point Theory Appl, doi:10.1007/s11784-010-0037-5
[19] Solodov M V, Svaiter B F. An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math Oper Res, 2000, 25: 214--230
[20] Cholamjiak P, Cho Y J, Suantai S. Strong convergence theorems for Bregman relatively nonexpansive mappings in Banach spaces. under review
[21] Chen J W, Wan Z, et al. Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach
spaces. Int J Math Math Sci, 2011, 2011: 1--23, doi:10.1155/2011/420192
[22] Chen J W, Cho Y J, Wan Z. Shrinking projection algorithms for equilibrium problems with a bifunction defined on the dual space of a Banach space. Fixed Point Theory Appl, 2011, 2011: 91
[23] Chen J W, Wan Z, Zou Y. Strong convergence theorems for firmly nonexpansive-type mappings and equilibrium problems in Banach spaces. Optim, doi:10.1080/02331934. 2011: 626779
[24] Nakajo K, Takahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.
J Math Anal Appl, 2003, 279: 372--379
[25] Martinez-Yanes C, Xu H K. Strong convergence of the CQ method for fixed point iterative processes. Nonlinear Anal, 2006, 64: 2400--2411
[26] Qin X, Su Y. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal, 2007, 67: 1985--1965
[27] Deimling K. Nonlinear Functional Analysis. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1985 |