[1] 朴勇杰. 度量凸空间上拟收缩型映射族的唯一公共不动点. 数学物理学报, 2010, 30A(2): 487--493
[2] 刘易成, 李志祥. 序Banach空间中的随机不动点定理. 数学物理学报, 2010, 30A(2): 494--500
[3] 朱兰萍, 李刚. 一般Banach空间中渐近非扩张型半群的不动点定理. 数学物理学报, 2009, 29A(2): 290--296
[4] 闻道君, 邓磊. 有限簇非扩张映像的不动点定理及逼近算法. 数学物理学报, 2012, 32A(3): 540--546
[5] Xi Wen, Xianjiu Huang. Common fixed point theorem under contractions in partial metric Spaces. Journal of Computational Analysis and Applications, 2011, 13(3): 583--589
[6] Romaguera S. Fixed point theorems for generalized contractions on partial metric spaces. Topology and its Applications, 2012, 159: 194--199
[7] Valero O. On Banach fixed point theorems for partial metric spaces. Applied General Topology, 2005, 6(2): 229--240
[8] Abdeljawad T, Erdal Karapinar, Tas K. Existence and uniqueness of a common fixed point on partial metric spaces.
Applied Mathematics Letters, 2011, 24: 1900--1904
[9] Matthews S G. Partial metric topology//Proc 8th Summer Conference on General Topology and Applications. Annals of the New York Academi of Sciences, 1994, 728: 183--197
[10] O'Neill S J. Partial metric, valuations and domain theory//Proceedings Eleventh Summer Conference on General Topology and Applications. Ann New York Acad Sci, 1996, 806: 304--315
[11] Romaguera S, Schellekens M. Partial metric monoids and semivaluation spaces. Topol Appl, 2005, 153(5/6): 948--962
[12] Romaguera S, Valero O. A quantitative computational model for complete partial metric spaces via formal balls.
Math Struct Comput Sci, 2009, 19(3): 541--563
[13] Altun I, Sola F, Simsek H. Generalized contractions on partial metric spaces, Topology and Applications. Annals of the New York Academi of Sciences, 2010, 157(18): 2778--2785
[14] Altun I, Sadarangani K. Corrigendum to "Generalized contractions on partial metric spaces". Topology and Appl, 2010, 157: 2778--2785; Topology and Applications, 2011, 158: 1738--1740
[15] Jungck G, Rhoades B E. Fixed point for set valued functions without continiuty. Indian J Pur Appl Math, 1998, 29: 227--238
[16] \'{C}iri\'{c} L, Samet B, Aydi H, Vetro C. Common fixed points of generalized contractions on partial metric spaces
and an application. Appl Math and Computation, 2011, 218: 2398--2406 |