[1] Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39(6): 2216--2240
[2] Caenepeel S, Ion B, Militaru G, Zhu S. The factorization problem and the smash biproduct of algebras and coalgebras. Algebras and Representation Theory, 2000, 3: 19--42
[3] Gohr A. On Hom-algebras with surjective twisting. J Algebra, 2010, 324(7): 1483--1491
[4] Jiao Z, Wisbauer R. The braided structures for ω-Smash coproduct Hopf algebras. J Algebra, 2005, 287(2): 474--495
[5] Ma T S, Wang S H. General double quantum groups. Comm Algebra, 2010, 38(2): 645--672
[6] Makhlouf A, Silvestrov S. Hom-algebras structures. J Gen Lie theory Appl, 2008, 2: 51--64
[7] Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9: 553--589
[8] Makhlouf A, Silvestrov S. Hom-Lie Admissible Hom-coalgebras and Hom-Hopf Algebras//Silvestrov S, Paal E, Abramov V, Stolin A, Eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Berlin: Springer-Verlag, 2009: 189--206
[9] Molnar R K. Semi-direct products of Hopf algebras. J Algebra, 1977, 47: 29--51
[10] Radford D E. Minimal quasi-triangular Hopf algebras. J Algebra, 1993, 157: 285--315
[11] Van Daele A, Van Keer S. The Yang-Baxter and pentagon equation. Composition Math, 1994, 91: 201--221
[12] Yau D. Hom-bialgebras and comodule Hom-algebras. Inter Elect J Algebra, 2010, 8: 45--64
[13] Yau D. Hom-quantum groups I: quasi-triangular Hom-bialgebras. arXiv: 0906.4128vl
[14] Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. arXiv: 0905.1980
[15] Yau D. Hom-quantum groups II: cobraided Hom-bialgebras and Hom-quantum geometry. arXiv: 0907.1880vl
[16] Yau D. Hom-quantum groups III: representations and module Hom-algebras. arXiv: 0911.5402vl |