[1] B\'{a}cs\'{o} S, Matsumoto M. On Finsler spaces of Douglas type, a generalization of the notion of Berwald space.
Publ Math Debrecen, 1997, 51: 385--406
[2] Berwald L. Parallel\'{u}bertragung in allgemeinen R\"{a}umen. Atti Congr Intern Mat Bologna, 1928, 4: 263--270
[3] Berwald L. On Finsler and Cartan geometries III: two-dimensional Finsler spaces with vectilinear extremals. Ann of Math, 1941, 42: 84--112
[4] Douglas J. The general geometry of paths. Ann of Math, 1927--1928, 29: 143--168
[5] Li B, Shen Z. On Douglas fourth root metrics. preprint
[6] Li B, Shen Y B, Shen Z. On a class of Douglas metrics. Studia Sci Math Hungarica, 2009, 46(3): 355--365
[7] Zu D, Zhang S, Li B. On Berwald m-th root Finsler metrics. Publ Math Debrecen Manuscript, 2012, 80: 169--177
[8] Matsumoto M. Theory of Finsler spaces with m-th root metric II. Publ Math Debrecen, 1996, 49: 135--155
[9] Matsumoto M, Okubo K. Theory of Finsler spaces with m-th root metric: Connecions and main scalars. Tensor N S, 1995, 56: 93--104
[10] Matsumoto M. Finsler spaces with (α, β)-metric of Douglas type. Tensor N S, 1998, 60: 123--134
[11] Matsumoto M. Projective changes of Finsler metrics and projectively flat Finsler spaces. Tensor N S, 1980, 34: 303--315
[12] Numata S. On Landsberg spaces of scalar curvature. J Korea Math Soc, 1975, 12(2): 97--100
[13] Pavlov D G, ed. Space-Time Structure. Collected Papers. Russian: TETRU, 2006
[14] Shimada H. On Finsler spaces with L=(ai1 i2… im yi1yi2… yim)1/m. Tensor N S, 1979, 33: 365--372
[15] Szab\'{o} Z I. Ein Finslerscher Raum ist gerade dann von skalarer Kr\"{u}mmung, wenn seine Weyl sche Projektivkr\"{u}mm\"{u}ng verschwindet. Acta Sci Math (Szeged), 1977, 39: 163--168 |