数学物理学报 ›› 2013, Vol. 33 ›› Issue (4): 673-685.

• 论文 • 上一篇    下一篇

弱群扭曲双模范畴和广义的Cibils-Rosso定理

郭巧玲1|王栓宏2   

  1. 1.嘉兴学院 数理与信息工程学院 浙江 嘉兴 314001;
    2.东南大学数学系 南京 210096
  • 收稿日期:2011-03-12 修回日期:2012-10-12 出版日期:2013-08-25 发布日期:2013-08-25
  • 基金资助:

    嘉兴学院重点项目(70110X03) 资助.

Weak Group Entwined Bimdules Category and |Generalized Cibils-Rosso Theorem

 GUO Qiao-Ling1, WANG Shuan-Hong2   

  1. 1.College of Mathematics Physics and Information Engineering, Jiaxing University, Zhejiang |Jiaxing 314001;
    2.Department of Mathematics, Southeast University, Nanjing 210096
  • Received:2011-03-12 Revised:2012-10-12 Online:2013-08-25 Published:2013-08-25
  • Supported by:

    嘉兴学院重点项目(70110X03) 资助.

摘要:

引入了弱群扭曲双模范畴, 并给出了它们的性质. 进一步地, 证明了广义的Cibils-Rosso定理在弱群扭曲结构下是成立的, 即: 弱群扭曲双模是某一个群分次代数上的模. 作为应用, 研究了上述理论在(弱)Hopf群余代数下的结果.

关键词: 弱Hopf群余代数, 弱群扭曲双模, Cibils-Rosso定理

Abstract:

We introduce the category of  weak group entwined bimodules and give some of their properties. Furthermore, we show that a generalized Cibils-Rosso's theorem holds in the setting of weak group entwining structures, that is, the weak group entwined bimodules are modules over a certain group graded algebra. As application, we consider our theories in the setting of (weak) Hopf group coalgebras.

Key words: Weak Hopf group coalgebra, Weak group entwined bimodules, Cibils-Rosso´s theorem

中图分类号: 

  • 16W30