[1] Zhang Y F, Zhang H Q, Yan Q Y. Integrable couplings of Botie-Pempinelli-Tu (BPT) hierarchy. Physics Letters A, 2002, 299: 543--548
[2] Xia T C, Yu F J, Chen D Y. The multi-component classical-Boussinesq hierarchy of soliton equations and its multi-component integrable coupling system. Chaos, Solitons and Fractals, 2005, 23: 1163--1167
[3] Ma W X, Xu X X, Zhang Y F. Semi-direct sums of Lie algebras and continuous integrable couplings. Physics Letters A, 2006, 351: 125--130
[4] Yu F J, Xia T C, Zhang H Q. The multi-component TD hierarchy and its multi-component integrable coupling system with five arbitrary functions. Chaos, Solitons and Fractals, 2006, 27: 1036--1041
[5] Xia T C, You F C. Multi-component Dirac equation hierarchy and its multi-component integrable couplings system. Chinese Physics, 2007, 16: 605--610
[6] Xia T C. Integrable couplings of classical-Boussinesq hierarchy and its Hamiltonian structure. Commun Theor Phys, 2010, 53: 25--27
[7] Ma W X, Fushssteiner B. Integrable theory of the perturbation equations. Chaos, Soliton and Fractals, 1996, 7: 1227--1250
[8] Ma W X, Fushssteiner B. The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy. Physics Letters A, 1996, 213: 49--55
[9] Ma W X. Nonlinear continuous integrable Hamiltonian couplings. Applied Mathematics and Computation, 2011, 217: 7238--7244
[10] Ma W X, Zhu Z N. Constructing nonlinear discrete integrable Hamiltonian couplings. Computers and Mathematics with Applications, 2010, 60: 2601--2608
[11] Tao S X, Xia T C. Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett, 2010, 27: 040202
[12] Tao S X, Xia T C. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure. Chin Phys B, 2010, 19: 070202
[13] Tao S X, Xia T C. Two super-integrable hierarchies and their super-Hamiltonian structures. Commun Nonlinear Sci Numer Simulat, 2011, 16: 127--132
[14] 陶司兴, 夏铁成. 超Broer-Kaup-Kupershmidt族的双非线性化. 数学年刊, 2012, 33A: 217--228
[15] Li Z, Dong H H, Yang H W. A super-soliton hierarchy and its super-Hamiltonian structure. Int J Theor Phys, 2009, 48: 2172--2176
[16] 季杰, 虞静, 董亚娟. 超AKNS方程新的可积分解. 数学物理学报, 2012, 32A: 424--432
[17] You F C. Nonlinear super integrable Hamiltonian couplings. J Math Phys, 2011, 52: 123510
[18] Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49: 033511 |