[1] Chabrowski J, Yang J. On the Neumann problem for an elliptic system of equations involving the critical Sobolev
exponent. Colloquium Math, 2001, 90: 19--35
[2] Deng S, Yang J. Critical Neumann problem for nonlinear elliptic systems in exterior domains. Electronic J Differ Equ, 2008, 2008: 1--13
[3] Cao D, Han P. High energy positive solutions of Neumann problem for an elliptic system of equations with critical
nonlinearities. Calc Var Partial Differential Equations, 2006, 25: 161--185
[4] Han P. Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents. Nonlinear Anal, 2006, 64: 869--886
[5] Tarantello G. Multiplicity results for an inhomogeneous Neumann problem with critical exponent. Manuscr-ipta Math,
1993, 81: 57--78
[6] Adimurti, Mancini G. The Neumann problem for elliptic equations with critical nonlinearity, a tribute in honour of Prodi G. Scuola Norm Sup Pisa, 1991: 9--25
[7] Comte M, Knaap M C. Existence of solutions of elliptic equations involving critical Sobolev exponent with Neumann boundary condition in general domains. Differ Integral Equ, 1991, 6: 1132--1146
[8] Wang X J. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J Differ Equ, 1991, 93: 283--310
[9] Alves C O, de Morais Filho D C, Souto M A S. On systems of elliptic equations involving subcritical or critical
Sobolev exponents. Nonlinear Anal, 2000, 42: 771--787
[10] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437--477
[11] Willem M. Minimax Theorems. Boston: Birkh\"{a}user, 1996
[12] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 347--381 |