[1] Lusztig G. Introduction to Quantum Groups. Progress in Mathematics, 110. Boston: Birkh\"auser, 1993
[2] Drinfeld V. Quantum Groups. In Proceedings of the International Congress of Mathematicians.Vol. 1, 2 (Berkeley, Calif., 1986), pages 798--820, Providence, RI: Amer Math Soc, 1987
[3] Jimbo M. A q-difference analogue of {$U(g)$} and the {Y}ang-{B}axter equation. Lett Math Phys, 1985, 10(1): 63--69
[4] Bernstein J, Frenkel I, Khovanov M. A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors. Selecta Math (NS), 1999, 5(2): 199--241
[5] Stroppel C.Categorification of the Temperley-Lieb cagegory, tangles, and cobordisms via projective functors. Duke Math J, 2005, 126(3): 547--596
[6] Frenkel I B, Khovanov M, Stroppel C. A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products. Selecta Math (NS), 2006, 12(3--4): 379--431, math.QA/0511467.
[7] Be{\u\i}linson A A, Lusztig G, MacPherson R. A geometric setting for the quantum deformation of GLn. Duke Math J, 1990, 61(2): 655--677
[8] Grojnowski I, Lusztig G. On Bases of Irreducible Representations of Quantum GLn. Contemp Math, Vol 139.
Providence, RI: Amer Math Soc, 1992: 167--174
[9] Zheng H. Categorification of integrable representations of quantum groups. 2008, arXiv:0803.3668
[10] Lauda A. A categorication of quantum sl2. Adv Math, 2010, arXiv: math QA/0803.3652
[11] Lauda A D. Categorified quantum sl(2) and equivariant cohomology of iterated flag varieties. 2008, math QA/0803. 3848
[12] Khovanov M, Lauda A. A diagrammatic approach to categorification of quantum group III. Quantum Topology, 2010, 1(1): 1--92
[13] Khovanov M, Lauda A. A diagrammatic approach to categorification of quantum group II. arXiv: math QA/0804. 2080
[14] Khovanov M, Lauda A. A diagrammatic approach to categorification of quantum group I.Represent. Theory, 2009, 13: 309--347
[15] Wang N, Wang Z X, Wu K, Yang Z F. A categorification of quantum sl2. Commun Theor Phys, 2011, 56: 37--45
[16] Jimbo M. Topics from Representation of Uq(g). Nankai Lecture Series in Mathematical Physics. Singapore: World Scientific, 1992
[17] Bernstein J, Frenkel I, Khovanov M. A categorification of the Temperley-Lieb algebra and Schur quotients of
U(sl2) via projective and Zuckerman functors. Selecta Math (NS), 1999, 5(2): 199--241
[18] Frenkel I B, Khovanov M, Stroppel C. A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products. Selecta Math (NS), 2006, 12(3--4): 379--431
[19] Sussan J. Category O and sl(k) link invariants. 2007, math QA/0701045
[20] Crane L, Frenkel I B. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases.
J Math Phys, 1994, 35(10): 5136--5154 |