[1] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1--4): 259--268
[2] Karkkainen T, Kunisch K, Majava K. Denosing of smooth images using L1-fitting. Computing Arc, 2005, 74(4): 353--376
[3] Yin W, Goldfrab D, Osher S. Image cartoon-texture decomposition regularized L1 functional. Geometric, and Level Set Methods in Computer Vision, 2005, 3752: 73--84
[4] Chan T, Golub G, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 1999, 20(6): 1964--1977
[5] You Y, Kaveh M. Blind image restoration by anisotropic regularization. IEEE Transactions on Image Processing, 1999, 8(3): 396--407
[6] Persson M, Bone D, Elmqvist H. Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography.
Physics in Medicine and Biology, 2001, 46(3): 853--866
[7] Rudin L, Osher S. Total variation based image restoration with free local constraints. Proc 1st IEEE ICIP, 1994, 1: 31--35
[8] Vogel C, Oman M. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 1996, 17(1): 227--238
[9] Carter J. Dual Methods for Total Variation-based Imge Restoration [D]. California: UCLA, 2002
[10] Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1/2): 89--97
[11] Ng M, Qi L, Yang Y, Huang Y. On semismooth Newton's methods for total variation minimization. Journal of Mathematical Imaging and Vision, 2007, 27(3): 265--276
[12] Ito K, Kunisch K. Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinea Analys, 2000, 41(5/6): 591--616
[13] Goldfarb D,Yin W. Second-order cone programming methods for total variation based image restoration. SIAM Journal on Scientific
Computing, 2005, 27(2): 622--645
[14] Vogel C R. Computational Methods for Inverse Problems. Philadelphia: SIAM, 2002
[15] Scherzer O. Handbook of Mathematical Methods in Imaging. New York: Springer-Verlag, 2010
[16] 孔令海, 郇中丹. 灰度图像复原的一种空间适应性向前向后扩散模型. 数学物理学报, 2009, 29(6): 1771--1784
[17] 邢丽丽, 李维国. 图像恢复问题中减少梯子现象的一种新模型. 数学物理学报, 2009, 29(4): 882--890
[18] Kong L, Xun Z, Guo B. BV solutions to a degenerate parabolic equation for image denoising. Acta Mathematica Scientia, 2007, 27(1): 169--179
[19] Schafer R, Mersereau R, Richaards M. Constrained iterative restoration algorithms. Proceedings of the IEEE, 1981, 69(4): 432--450
[20] Krishnan D, Lin P, Yip A. A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Transactions on Image Processing, 2007, 16(11): 2766--2777
[21] Heiterm\"{u}ller M, Ito K, Kunisch K. The primal-dual active set strategy as a semismooth Newton method. SIAM Journal on
Optimization, 2003, 13(3): 865--888
[22] Pazy A. Semigroups of nonlinear contractions and their asymptotic behaviour. Pitman Research Notes in Math, 1979, 30: 36--134
[23] Ekeland I, Turbull T. Infinite Dimensional Optimazation and Convexity. Chicago: The University of Chicago Press, 1983
[24] Ito K, Kunisch K. An active set strategy based on the augmented Lagrangia formulation for image restoration. Mathematical Modelling and Numerical Analysis, 1999, 33(1): 1--21 |