[1] Wang X. Schauder estimates for elliptic and parabolic equations. Chin Ann Math, 2006, 27B(6): 637--642
[2] Safonov M V. The classical solution of the elliptic Bellman equation. Akad Nauk SSSR, 1984, 278: 810--813; English Translation in Soviet Math, USSR Izv, 1989, 33: 597--612
[3] Caffarelli L A. Interior a priori estimates for solutions of fully nonlinear equations. Ann of Math, 1989, 130(2): 189--213
[4] Caffarelli L A. Interior W2, p estimates for solutions of Monge-Ampère equations. Ann of Math, 1990, 131(2): 135--150
[5] Capogna L, Han Q. Pointwise Schauder Estimates for Second Order Linear Equations in Carnot Groups. Harmonic Analysis at
Mount Holyoke. Providence, RI: Amer Math Soc, 2003
[6] Gutiérrez C, Lanconelli E. Schauder estimates for sub-elliptic equations. J Evol Equ, 2009, 9(4): 707--726
[7] Bramanti M, Brandolini L. Schauder estimates for parabolic nondivergence operators of H\"{o}rmander type. J Differential Equations, 2007, 234(1): 177--245
[8] Capogna L. Regularity of quasi-linear equations in the Heisenberg group. Commun Pure Appl Math, 1997, 50(9): 867--889
[9] Simon L. Schauder estimates by scaling. Calc Var Partial Differential Equations, 1997, 5: 391--407
[10] Yudovich V. Non-stationary flow of an ideal incompressible fluid (in Russian). u{Z} Vy\v{c}isl Mat iMat Fiz, 1963, 3: 1032--1066
[11] Folland G B. A fundamental solution for a subelliptic operator. Bull Amer Math Soc, 1973, 79: 373--376
[12] Cygan J. Wiener's test for the Brownian motion on the Heisenberg group. Colloquium Math, 1978, 39: 367--373
[13] Folland G B, Stein E M. Estimates for the ∂b complex and analysis on the Heisenberg group. Comm Pure Appl Math, 1974, 27: 429--522
[14] Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann Inst
Fourier Grenoble, 1990, 40: 313--356
[15] Uguzzoni F, Lanconelli E. On the Poisson kernel for the Kohn Laplacian. Rendiconti di Matematica, 1997, 17: 659--677
[16] Danielli D, Garofalo N, et al. On the best possible character of the LQ norm in some a priori estimates for non-divergence form
equations in Carnot groups. Proc Amer Math Soc, 2003, 131(11): 3487--3498
[17] Bonfiglioli A, Lanconellli E, et al. Stratified Lie groups and potential theory for their sub-Laplacians. Berlin, Heidelerg: Springer, 2007
[18] Arena G, Caruso A O, et al. Taylor formula on step two Carnot group. Rev Mat Iberoamericana, 2010, 26(1): 239--259 |