数学物理学报 ›› 2012, Vol. 32 ›› Issue (6): 1136-1148.

• 论文 • 上一篇    下一篇

一类奇异临界椭圆方程组的极小能量解

吕登峰   

  1. 湖北工程学院数学与统计学院 湖北孝感 432000
  • 收稿日期:2010-07-25 修回日期:2011-12-04 出版日期:2012-12-25 发布日期:2012-12-25
  • 基金资助:

    湖北省教育厅科研计划重点项目(D20122605)和湖北工程学院自然科学项目(Z2012003)资助

Least Energy Solutions for a Class of Singular Critical Elliptic Systems

 LV Deng-Feng   

  1. School of Mathematics and Statistics, Hubei Engineering University, Hubei Xiaogan 432000
  • Received:2010-07-25 Revised:2011-12-04 Online:2012-12-25 Published:2012-12-25
  • Supported by:

    湖北省教育厅科研计划重点项目(D20122605)和湖北工程学院自然科学项目(Z2012003)资助

摘要:

研究一类含Sobolev临界指数与非线性耦合项的奇异椭圆方程组,应用变分方法, 通过Nehari流形和集中紧性原理证明对应的能量泛函满足局部的(PS)c条件, 得到了这类方程组极小能量解的存在性.

关键词: 椭圆方程组, 临界指数, Nehari流形, 集中紧性原理, 极小能量解

Abstract:

In this paper, a class of singular elliptic systems involving Sobolev critical exponents and coupled nonlinear terms are studied. By using  Nehari manifold and concentration-compactness principle, the existence results of least energy solutions are obtained by proving that the energy functional corresponding to the systems satisfies the (PS)c condition.

Key words: Elliptic system, Critical exponent,  Nehari manifold, Concentration-compactness principle, Least energy solution

中图分类号: 

  • 35J50