[1] Adriouch K, El Hamidi A. The Nehari manifold for systems of nonlinear elliptic equations. Nonlinear Analysis, 2006, 64: 2149--2167
[2] Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82: 2661--2664
[3] Alves C O, Filho D C de M, Souto M A S. On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Analysis, 2000, 42: 771--787
[4] Bouchekif M, Nasri Y. On elliptic system involving critical Sobolev-Hardy exponents. Mediterranean Journal of Mathematics, 2008, 5: 237--252
[5] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36: 437--478
[6] Cao D M, Peng S J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193(2): 424--434
[7] Chen J Q. Existence of solutions for a nonlinear PDE with an inverse square potential. J Differential Equations, 2003, 195: 497--519
[8] Deng Y B, Peng S J. Existence of multiple positive solutions for inhomogeneous Neumann problem. J Math Anal Appl, 2002, 271: 155--174
[9] Kang D S, Deng Y B. Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy exponents. Nonlinear Analysis, 2005, 60: 729--753
[10] Ferrero A, Gazzola F. Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations, 2001, 177: 494--522
[11] Azorero J G, Alonso I P. Hardy inequalities and some critical elliptic and parabolic problems. J Differential Equations, 1998, 144: 441--476
[12] Huang Y, Kang D S. Elliptic systems involving the critical exponents and potentials. Nonlinear Analysis, 2009, 71: 3638--3653
[13] Liu Z X, Han P G. Existence of solutions for singular elliptic systems with critical exponents. Nonlinear Analysis, 2008, 69: 2968--2983
[14] Long J, Yang J F. Existence results for critical singular elliptic systems. Nonlinear Analysis, 2008, 69: 4199--4214
[15] Lions P L. The concentration-compactness principle in the calculus of variations (the limit case, part 1). Rev Matemática Iberoamericana, 1985, 1(1): 145--201
[16] Lions P L. The concentration-compactness principle in the calculus of variations (the limit case, part 2). Rev Matemática eroamericana, 1985, 1(2): 45--121
[17] Shen Z F, Yang M B. Nontrivial solutions for Hardy-Sobolev critical elliptic equations. Acta mathematica Sinica (Chinese Series), 2005,
48: 999--1010
[18] Smets D. Nonlinear Schr\"{o}dinger equations with Hardy potential and critical nonlinearities. Trans Amer Math Soc, 2005, 357: 2909--2938
[19] Terracini S. On positive entire solutions to a class of equations with singular coefficients and critical exponent. Adv Differential
Equations, 1996, 1: 241--264
[20] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
[21] Wu T F. The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear Analysis, 2008, 68: 1733--1745 |