数学物理学报 ›› 2012, Vol. 32 ›› Issue (5): 982-995.

• 论文 • 上一篇    下一篇

双负介质中电磁波传播的各向异性非协调有限元分析

石东洋1|裴丽芳1,2|许超2   

  1. 1.郑州大学数学系 郑州 450052; |2.洛阳理工学院数理部 河南洛阳 471003
  • 收稿日期:2011-03-08 修回日期:2012-04-19 出版日期:2012-10-25 发布日期:2012-10-25
  • 基金资助:

    国家自然科学基金(10671184, 10971203)、高等学校博士学科点专项科研基金(20094101110006)和河南省教育厅基金(2009B110013, 2010B110017)资助

Anisotropic Nonconforming Finite Element Analysis for Electromagnetic Wave Propagation in Double Negative Meta-materials

 SHI Dong-Yang1, FEI Li-Fang1,2, XU Chao2   

  1. 1.Department of Mathematics, Zhengzhou University, Zhengzhou 450052|2.Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Henan Luoyang 471003
  • Received:2011-03-08 Revised:2012-04-19 Online:2012-10-25 Published:2012-10-25
  • Supported by:

    国家自然科学基金(10671184, 10971203)、高等学校博士学科点专项科研基金(20094101110006)和河南省教育厅基金(2009B110013, 2010B110017)资助

摘要:

研究了三维双负介质中麦克斯韦方程的各向异性非协调有限元方法. 一个低阶非协调长方体元被分别用于半离散和全离散混合元格式. 同时, 在各向异性网格下给出了方程中四个变量的误差估计.

关键词: 非协调元, 各向异性网格, 麦克斯韦方程, 双负介质, 误差估计

Abstract:

In this paper, an anisotropic nonconforming finite element method is studied for three-dimensional Maxwell equations when double negative meta-materials are involved. A low order nonconforming element is used in a semi-discrete as well in a fully discrete mixed finite
element scheme. At the same time, error estimates for all four variables in the equations are obtained for anisotropic meshes.

Key words: Nonconforming element, Anisotropic meshes, Maxwell equations,  Double negative meta-materials, Error estimates

中图分类号: 

  • 65N30