[1] Li J C, Wood A H. Finite element analysis for wave propagation in double negative metamaterials. J Sci Comput, 2007, 32(2): 263--286
[2] Engheta N, Ziolkowski R W. A positive future for double-negative metamaterials. IEEE Trans, Microw Theory Techn, 2005, 53: 1535--1556
[3] Holden A J. Towards some real applications for negative materials. Photonic and Nanostruct, Fundam Appl, 2005, 3: 96--99
[4] Monk P. A comparison of three mixed methods for the time-dependent Maxwell's equations. SIAM J Sci Stat Comput, 1992, 13: 1097--1122
[5] Lin Q, Yan N N. Global superconvergence for Maxwell's equations. Math Comp, 1999, 69: 159--176
[6] Costabel M, Dauge M. Weighted regularization of Maxwell equations in polyhedral domains. Numer Math, 2002, 93(2): 239--277
[7] Gopalakrishnan J, Pasciak J E, Demkowicz L. Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J Numer Anal, 2004, 42: 90--108
[8] Cummer S A. Dynamics of causal beam refraction in negative refractive index materials. Appl Phys Lett, 2003, 82: 2008--2010
[9] Ziolkowski R W. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt Exp, 2003, 11: 662--681
[10] Kolinko P, Smith D R. Numerical study of electromagnetic waves interacting with negative index materials. Opt Expr, 2003, 11: 640--648
[11] Douglas J Jr, Santos J E, Sheen D. A nonconforming mixed finite element method for Maxwell's equations. Math Meth Appl Sci, 2000, 10(4): 593--613
[12] Shi D Y, Pei L F. Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell's equations. Int J Numer Anal and Model, 2008, 5(3): 373--385
[13] Shi D Y, Pei L F. A nonconforming arbitrary quadrilateral finite element method for approximating Maxwell's equations. Numer Math J Chinese Univ, 2007, 16(4): 289--299
[14] Shi D Y, Pei L F. Low order Crouzeix-Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell's
equations. Appl Math Comput, 2009, 211: 1--9
[15] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
[16] Apel T. Anisotropic Finite Elements: Local Estimates and Applications. Stuttgart: B G Teubner, 1999
[17] Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolations and Quasi-Wilson element for narrow quadrilateral meshes. IMA J Numer Anal, 2004, 24: 77--95
[18] Shi D Y, Ren J C. Nonconforming finite element methods for the stationary conduction-convection problem. Int J Numer Anal and Model, 2008, 6(2): 293--310
[19] Shi D Y, Wang H H. An anisotropic nonconforming finite element method for approximating a class of nonlinear sobolev equations. J Comput Math, 2009, 27(2/3): 299--314
[20] Shi D Y, Ren J C, Hao X B. A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations. Appl Math Comput, 2009, 207(2): 462--477
[21] Shi D Y, Peng Y C, Chen S C. Error estimates for rotated Qrot1 element approximation of the eigenvalue problem on anisotropic meshes. Appl Math Lett, 2009, 6(22): 952--959
[22] 石东洋, 谢萍丽. Sobolev 方程的一类各向异性非协调有限元逼近. 系统科学与数学, 2009, 29(1): 116--128
[23] Chen S C, Zhao Y C, Shi D Y. Anisotropic interpolations with application to nonconforming elements. Appl Numer Math, 2004, 49: 135--152
[24] 石东洋, 龚伟. 各向异性网格上抛物方程全离散格式的高精度分析. 数学物理学报, 2009, 29(4): 898--911
[25] 石东洋, 王慧敏. 非定常Navier-Stokes方程的质量集中各向异性非协调有限元逼近. 数学物理学报. 2010, 30(4): 1018--1029
[26] Ming P B, Shi Z C, Xu Y. A new superconvergence property of nonconforming rotated Q1 element in 3-D. Comput Methods Appl
Mech Engrg, 2007, 197: 95--102
[27] Hu J, Shi Z C. Constrained quadrilateral nonconforming rotated Q1 element. J Comput Math, 2005, 23(5): 561--586
[28] 石东洋, 毛士鹏. 三维 Stokes 问题各向异性混合元分析. 应用数学学报, 2005, 23(3): 261--274
[29] Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation. IMA J Numer Anal, 2005, 25: 160--181
[30] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Anal Theor Meth Appl, 2009, 71(9): 3842--3852
[31] Li J C, Chen Y T. Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media. Comput Methods Appl Mech Engrg, 2006, 195: 4420--4229 |