[1] Blaszak M, Marciniak K. R-matrix approach to lattice integrable systems. J Math Phys, 1994, 35: 4661--4682
[2] Gordoa P R, Joshi N, Pickering A. On a generalized 2+1 dispersive water wave hierarchy. Publ RIMS (Kyoto), 2001, 37: 327--347
[3] 谷超豪, 李翊神, 屠规彰. 孤立子理论和应用. 杭州:浙江科技出版社,1990
[4] 胡星标,李勇,屠规彰. T -方程族和KdV方程族的Miura型变换及递推算子间的关系. 数学物理学报, 1989, 9: 321--326
[5] Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 1996, 7(8): 1227--1250
[6] Ma W X. Integrable couplings of soliton equations by perturbations I: A general theory and application to the KdV hierarchy.
Methods Appl Anal, 2000, 7: 21--56
[7] Zhang Y F, Fan E G, Zhang Y Q. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton
equations. Phys Lett A, 2006, 357: 454--461
[8] Xia T C, You F C, Chen D Y. A generalized cubic Volterra lattice hierarchy and its integrable couplings system. Chaos, Solitons and Fractals, 2006, 27: 153--158
[9] Fan E G. A lattice hierarchy and its continuous limits. Phys Lett A, 2008, 372: 6368--6374
[10] Fan E G, Dai H H. A differential-difference hierarchy associated with relativistic Toda and Volterra hierarchies. Phys Lett A, 2008, 372: 4578--4585
[11] Zhang Y F, Zhang H Q. A direct method for integrable couplings of TD hierarchy. J Math Phys, 2002, 43: 466--472
[12] Yu F J, Li L. A new method to construct the integrable coupling system for discrete soliton equation with the Kronecker product.
Phys Lett A, 2008, 372: 3548--3554
[13] Ma W X, Xu X X, Zhang Y F. Semidirect sums of Lie algebras and discrete integrable couplings. J Math Phys, 2006, 47: 053501
[14] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A: Gen Math, 2006, 39: 10787--10801
[15] Ma W X, Zhang Y. Component-trace identities for Hamiltonian structures. Appl Anal, 2010, 89: 457--472
[16] Ma W X. A discrete variational identity on semi-direct sums of Lie algebras. J Phys A: Math Theor, 2007, 40: 15055--15069
[17] Ma W X, Gao L. Coupling integrable couplings. Modern Phys Lett B, 2009, 23: 1847--1860
[18] Zhang Y F, Tam H W. Three kinds of coupling integrable couplings of the KdV hierarchy of evolution equations. J Math Phys, 2010, 51: 043510
[19] Zhang Y F, Tam H W. Four Lie algebras associated to R6 and their applications. J Math Phys, 2010, 51: 093514
[20] Zhang Y F, Feng B L. A few Lie algebras and their applications for generating integrable hierarchies of evolution types. Commun Nonl Scie Nume Simu, 2011, 16: 3045--3061
[21] Ma W X, Zhu Z N. Constructing nonlinear discrete integrable Hamiltonian couplings. Comp Math Appl, 2010, 60: 2601
[22] Ma W X. Nonlinear continuous integrable Hamiltonian couplings. Appl Math Compu, 2011, 217(17): 7238--7244
[23] Yu F J. A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure. Phys Lett A, 2011, 375: 1504--1509
[24] Xu X X, Yang H X, Ding H Y. A Liouville integrable lattice soliton equation, infinitely many conservation laws and integrable
coupling systems. Phys Lett A, 2006, 349: 153--163
[25] Yu F J, Zhang H Q. A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system. Phys Lett A, 2006, 353: 326--331 |