数学物理学报 ›› 2012, Vol. 32 ›› Issue (4): 661-669.

• 论文 • 上一篇    下一篇

二阶非线性振动的Philos型积分平均

林全文1|俞元洪2   

  1. 1.广东石油化工学院数学系 广东 茂名 525000; 2.中国科学院数学与系统科学研究院 北京 100190
  • 收稿日期:2010-08-30 修回日期:2011-09-29 出版日期:2012-08-25 发布日期:2012-08-25
  • 基金资助:

    广东石油化工学院自然科学研究基金重点课题(LK201002)和国家自然科学研究基金(10971232)资助

Integral Average |of Philos Type for Second Order Nonlinear Oscillation

 LIN Quan-Wen1, YU Yuan-Hong2   

  1. 1.Department of |Mathematics, Guangdong University |of Petrochemical Technology, Guangdong Maoming 525000; 2.Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
  • Received:2010-08-30 Revised:2011-09-29 Online:2012-08-25 Published:2012-08-25
  • Supported by:

    广东石油化工学院自然科学研究基金重点课题(LK201002)和国家自然科学研究基金(10971232)资助

摘要:

研究二阶非线性微分方程
(a(t)x'(t))'+p(t)x'(t)+q(t)f(x(t))=0      (E)

的振动性,在较一般的假设下给出了若干新的振动准则. 该文的方法不同于先前的作者[1--4, 8--10, 13--15], 其结果推广和补充了Philos[7]和Rogvchenko[9]早先的结果. 文中也给出了一个说出结果应用的例子.

关键词: 广义Riccati变换, Philos型积分平均, 强次线性, 强超线性, 振动准则

Abstract:

The purpose of this paper is to study the oscillation of second order nonlinear differential equation

(a(t)x'(t))'+p(t)x'(t)+q(t)x(t)=0.                              (E)
Some new oscillation criteria are established under quite general assumptions. Our methodology is somewhat different from that of previous authors [1--4, 8--10, 13--15]. Our results extend and complement some earlier results of Philos[7] and Rogovchenko[9].  An example is also given to illustrate the results.

Key words: Generalized Riccati transformation,  Integral average of Philos type, Strongly sublinear,  Strongly superlinear, Oscillation criterion

中图分类号: 

  • 34C10