[1]}Auslander M, Reiten I. Representation theory of Artin algebras III. Comm Algebra, 1995, 3: 239--294
[2] Auslander M, SmalΦ S O. Almost split sequences in subcategories. J Algebra, 1981, 69(2): 426--454
[3] Happel D. Triangulated categories in the representation theory of finite dimensional algebras. London Math Soc, Lecture Note Series, 1988, 119
[4] Happel D. Auslander-Reiten triangles in derived categories of finite-dimensional algebras. Proc Amer Math Soc, 1991, 112: 641--648
[5] Reiten I, Van Den Bergh. Noetherian hereditary abelian categories satisfying Serre duality. J Amer Math Soc, 2002, 15: 295--366
[6] Bondal I, Kapranov M. Representable functors, Serre functors, and mutations. izv Akad Nauk SSSR Ser Mat, 1989, 53: 1183--1205 (in Russian); Math USSR Izv, 1990, 35: 519--541 (English translation)
[7] Xiao J, Zhu B. Locally finite triangulated categories. J Algebra, 2005, 290(2): 473--490
[8] JΦrgensen P. Auslander-Reiten triangles in subcategories. J K-theory, 2009, 3: 583--601
[9] Krause H. Auslander-Reiten theory via Brown representability. K-Theory, 2000, 20: 331--344
[10] Verdier J L. Catégories dérivees, etat 0, SGA 4 1/2, LNM 569. Berlin, Heidelberg, NewYork: Springer-Verlag, 1977
[11] Miyashi J I. Localization of triangulated categories and derived categories. J Algebra, 1991, 141: 463--483
[12] Keller B. On triangulated orbit categories. Doc Math, 2005, 10: 551--581
[13] Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers. Astérisque, 100: 1982
[14] JΦrgensen P. Reflecting recollements. Osaka J Math, 2010, 47(1): 209--213 |