[1]} H\"omander L. Hypoellptic second order differential equations. Acta Math, 1967, 119: 147--171
[2] Folland G. Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv Mat, 1975, 13: 161--207
[3] Capogna L, Danielli D, Garofalo N. An embedding theorem and the Harnack inequality for nonlinear subelliptic equations. Comm Part Diff Eqs, 1993, 18: 1765--1794
[4] Capogna L, Danielli D, Garofalo N. The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm
Anal Geom, 1994, 2: 203--215
[5] Garofalo N, Nhieu D M. Isoperimetric and Sobolev inequalities for Carnot-Caratheodory spaces and the existence of minmal surfaces. Comm Pure Appl Math, 1996, 49: 1081--1144
[6] Dutiérrez C E, Lanconelli E W. Maximum principle, non-homogeneous Harnack inequality and Liouville theorems for X-elliptic operators. Comm Part Diff Eqs, 2003, 28(11/12): 1833--1862
[7] Mazzoni G. Green function for X-elliptic operators. Manuscripta Math, 2004, 115: 207--238
[8] Xu C J, Zuily C. Higher interior regularity for quasilinear subelliptic systems. Calc Var, 1997, 5: 323--343
[9] Trudinger N S, Wang X J. On the weak continuity of elliptic operators and applications to potential theory. Amer J Math, 2002, 124: 369--410
[10] Capogna L. Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups. Math Ann, 1999, 313: 263--295
[11] Di Fazio G, Zamboni P. H\"older continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces. Math Nachr, 2004, 272: 3--10
[12] Damascelli L, Sciunzi B. Harnack inequalities, maximum and comparison principles and regularity of positive solutions of m-Laplase equations. Calc Vari, 2005, 25(2): 139--159
[13] Manfredi J J, Mingione G. Regularity results for quasilinear elliptic equations in the Heisenberg group. Math Ann, 2007, 339: 485--544
[14] Zheng S Z, Feng Z S. Green functions for a class of nonlinear degenerate operators with X-ellipticity. To appear in Transactions of AMS,
2011, 38Pages
[15] Bellaiche A, Risler J J. Sub-Riemannian Geometry. Boston: Birkhäser Verlag, 1996
[16] Bidaut-Veron M -F, Pohozaev S. Nonexistence results and estimates for some nonlinear elliptic problems. J Anal Math, 2001, 84: 1--49
[17] Serrin J, Zou H H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math, 2002, 189: 79--142
[18] Heinonen J, Kilpel\"ainen T, Martio O. Nonlinear potential theory of degenerate elliptic equations. Oxford: Clarendon Press, 1993
[19] Astarita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGrawHill, 1974
[20] Nagel A, Stein E, Wainger S. Balls and metrics defined by vector fields I: basic properties. Acta Math, 1985, 155: 103--147
[21] 郑神州,王喜芬. 拟线性次椭圆方程很弱解的正则性. 数学物理学报, 2010, 30A(2): 432--439 |