[1] Mazur S, Ulam S M. Sur les transformations isométriques d'espaces vectoriels normés. C R Acad Sci Paris, 1932, 194: 946--948
[2] Mankiewicz P. On extension of isometries in normed linear spaces. Bull Acad Polon Sci, 1972, 20: 367--371
[3] Tingley D. Isometries of the unit sphere. Geometriae Dedicata, 1987, 22: 372--378
[4] Ding G G. On the problem of isometric extension between the unit spheres in Banach space. Acta Math Sci, 2010, 30: 1198--1209
[5] Ding G G. The isometric extension of the into mappings from a L∞(Γ)-type space to some Banach space. Illinois J Math, 2007, 51: 445--453
[6] Liu R. On extension of isometries and approximate isometries between unit spheres. J Math Anal Appl, 2009, 352: 749--761
[7] Liu R. On extension of isometries between unit spheres of L∞(Γ)-type space and a Banach space E. J Math Anal Appl, 2007, 333: 959--970
[8] Fang X N, Wang J H. Extension of isometries on the unit sphere of l p(Γ) space. Sci China Math, 2010, 53: 1085--1096
[9] Wang J. On extension of isometries between unit spheres of ALp-spaces (0< p <∞). P Am Math Soc, 2004, 132: 2899--2909
[10] 侯志彬, 张丽娟. ALp -空间(1 50(6): 1435--1440
[11] Yang X Z. On extension of isometries between unit spheres of Lp(μ) and Lp(ν, H) (1<p≠2, H is a Hilbert space). J Math Anal Appl, 2006, 323: 985--992
[12] Ding G G. On linearly isometric extensions for 1-Lipschitz mappings between unit spheres of ALp-spaces (p> 2). Acta Math Sin, 2010, 26: 331--336
[13] Ding G G. The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space. Sci China, 2002, 45A: 479--483
[14] Liu R. 1-Lipschitz mappings between unit spheres of Banach spaces. Acta Math Sin (Chin Ser), 2007, 50: 1063--1070
[15] Fang X N. On extension of 1-Lipschitz mappings between two unit spheres of l p(Γ) type spaces (1< p<∞). J Math Res Exp, 2009, 29: 687--692 |