[1] Borcherds R E. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068--3071
[2] Frenkel I B, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Appl Math. New York: Academic Press, 1988
[3] Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators. Progress in Math Boston: Birkhäuser, 1993
[4] Frenkel I B, Huang Y Z, Lepowsky J. On Axiomatic Approaches to Vertex Operator Algebras and Modules. Memoirs Amer Math Soc. Providence RI: Amer Math Soc, 1993
[5] Lepowsky J, Li H. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math. Boston: Birkhäuser, 2004
[6] Zhu Y. Modular invariance of characters of vertex operator algebras. J Amer Math Soc, 1996, 9: 237--302
[7] Kac V, Wang W. Vertex operator superalgebras and their representations. Contemp Math, 1994, 175: 161--191
[8] Dong C, Li H, Mason G. Twisted representations of vertex operator algebras. Math Ann, 1998, 310: 571--600
[9] Dong C, Li H, Mason G. Vertex operator algebras and associative algebras. J Algebra, 1998, 206: 67--96
[10] Dong C, Li H, Mason G. Twisted representations of vertex operator algebras and associative algebras. International Math Research Notices, 1998, 8: 389--397
[11] Miyamoto M, Tanabe K. Uniform product of Ag,n(V) for an orbifold model V and $G$-twisted Zhu algebra. J Algebra, 2004, 274: 80--96
[12] Dong C, Zhao Z. Twisted representations of vertex operator superalgebras. Commu Contemp Math, 2006, 8: 101--122
[13] Dong C, Nagatomo K. Automorphism groups and twisted modules for lattice vertex operator algebra. Contemp Math, 1999, 268: 117--133
[14] Ogawa A. Zhu's algebra of rank one lattice vertex operator superalgebras. Osaka J Math, 2000, 37: 811--822 |