[1] Webb G F. Theory of Nonlinear Age-dependent Population Dynamics. New York: Marcel Dekker, 1985
[2] Iannelli M. Mathematical Theory of Age-structured Population Dynamics. Pisa: Giardini Editori, 1994
[3] Cushing J M. An Introduction to Structured Population Dynamics. Philadelphia: SIAM, 1998
[4] Ani$\c{t}$a S. Analysis and Control of Age-dependent Population Dynamics. Dordrecht: Kluwer, 2000
[5] Murphy L F. Maximum sustainable yield of a nonlinear population model with continuous age structure.
Math Biosci, 1991, 104: 259--270
[6] Barbu V, Iannelli M. Optimal control of population dynamics. J Optim Theory Appl, 1999, 102: 1--14
[7] Barbu V. Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer, 1994
[8] Barbu V, Iannelli M, Martcheva M. On the controllability of the Lotka-McKendrick model of population
dynamics. J Math Anal Appl, 2001, 253: 142--165
[9] Fister K R, Lenhart S. Optimal control of a competitive system with age-structure. J Math Anal Appl, 2004, 291: 526--537
[10] Fister K R, Lenhart S. Optimal harvesting in an age-structured predator-prey model. Appl Math Optim, 2006, 54: 1--15
[11] 雒志学, 王绵森. 具有年龄结构的线性周期种群动力系统的最优收获控制问题. 数学物理学报, 2005, 25(6): 905--912
[12] 何泽荣, 刘炎. 一类基于时滞和年龄分布的种群控制问题. 系统科学与数学, 2010, 30(1): 53--59
[13] 何泽荣. 具有年龄结构和约束的群落系统的最优收获. 数学物理学报, 2010, 30A(2): 477--486
[14] He Z R. Optimal birth control of age-dependent competitive species. J Math Anal Appl, 2004, 296: 286--301
[15] He Z R, Hong S H, Zhang C G. Double control problems of age-distributed population dynamics. Nonlinear Anal RWA, 2009, 10: 3112--3121
[16] Zhao C, Zhao P, Wang M S. Optimal harvesting for nonlinear age-dependent population dynamics. Math Comput Model, 2006, 43: 310--319
[17] Luo Z X. Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model.
Appl Math Comput, 2007, 186: 1742--1752
[18] Metz J A J, Diekmann O. The Dynamics of Physiologically Structured Populations. Berlin: Springer, 1986
[19] Tucker S, Zimmerman S. A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J Appl Math, 1988, 48: 549--591
[20] Cushing J M. A competition model for size-structured species. SIAM J Appl Math, 1989, 49: 838--858
[21] Calsina A, Salda\~{n}a J. A model of physiologically structured population dynamics with a nonlinear
individual growth rate. J Math Biol, 1995, 33: 335--364
[22] Kato N. A general model of size-dependent population dynamics with nonlinear growth rate. J Math Anal Appl, 2004, 297: 234--256
[23] Farkas J Z. Stability conditions for a non-linear size-structured model. Nonlinear Anal RWA, 2005, 6: 962--969
[24] Farkas J Z, Hagen T. Stability and regularity results for a size-structured population model. J Math Anal Appl, 2007, 328: 119--136
[25] Liu Y, He Z R. Stability results for a size-structured population model with resources-dependence and
inflow. J Math Anal Appl, 2009, 360: 665--675
[26] Ackleh A S, Deng K, Wang X B. Competitive exclusion and coexistence for a quasilinear size-structured population model. Math Biosci, 2004, 192: 177--192
[27] 刘克英, 刘伟安. 大小结构种群模型的平衡解稳定性. 数学物理学报, 2010, 30A(2): 417--424
[28] Hadeler K P, M\"{u}ller J. Optimal harvesting and optimal vaccination. Math Biosci, 2007, 206: 249--272
[29] Hritonenko N, et al. Maximum principle for a size-structured model of forest and carbon sequestration management. Applied Mathematics Letters, 2008, 21: 1090--1094
[30] Kato N. Optimal harvesting for nonlinear size structured population dynamics. J Math Anal Appl, 2008, 342: 1388--1398 |