数学物理学报 ›› 2012, Vol. 32 ›› Issue (1): 80-89.

• 论文 • 上一篇    下一篇

类对称函数的Schur凸性和不等式

龙波涌1,2, 褚玉明1   

  1. 1.湖州师范学院 数学系 浙江湖州 313000;
    2.$安徽大学数学科学学院 合肥 230039
  • 收稿日期:2009-05-14 修回日期:2011-05-29 出版日期:2012-02-25 发布日期:2012-02-25
  • 基金资助:

    国家自然科学基金(11071069)和浙江省高等学校创新团队基金(T200924)资助

The Schur Convexity and Inequalities for a Class of Symmetric Functions

 LONG Bo-Yong1,2, CHU Yu-Ming1   

  1. 1.Department of Mathematics, Huzhou Teachers College, Zhejiang Huzhou 313000;
    2.College of Mathematics Science, Anhui University, Hefei 230039
  • Received:2009-05-14 Revised:2011-05-29 Online:2012-02-25 Published:2012-02-25
  • Supported by:

    国家自然科学基金(11071069)和浙江省高等学校创新团队基金(T200924)资助

摘要:

x = (x1, x2,···, xn) ∈ (0,1)nr ∈ {1, 2,···, n} 定义对称函数
Fn(x, r) = Fn(x1, x2,···, xn; r) =∏1≤i1<i2<···<irn ∑ j=1r(1+xi3/1- xi3)1/r,

其中i1, i2, ···, ir  是整数. 该文证明了Fn(x, r) 是(0,1)n 上的Schur凸、Schur乘性凸和Schur调和凸函数. 作为应用,利用控制理论建立了若干不等式.

关键词: Schur凸, Schur乘性凸, Schur调和凸

Abstract:

For x = (x1, x2,···, xn) ∈ (0,1) and r ∈ {1, 2,···, n}, the symmetric function Fn(x, r) is defined by
Fn(x, r) = Fn(x1, x2,···, xn; r) =∏1≤i1<i2<···<irn ∑ j=1r(1+xi3/1- xi3)1/r,
where i1, i2, ···, ir are integers. In this paper, it is proved that Fn(x,r) is Schur convex, Schur multiplicatively convex and Schur harmonic convex on (0,1)n. As applications, some inequalities are established by use of the theory of majorization.

Key words: Schur convex, Schur multiplicatively convex, Schur harmonic convex

中图分类号: 

  • 05E05