[1] Ambartsumyan V A. \"{U}ber eine frage der eigenwerttheorie. Z Phys, 1929, 53: 690--695
[2] Borg G. Eine umkehrung der Sturm-Liouvillesehen eigenwertaufgabe. Acta Mathematica, 1946, 78: 1--96
[3] Levinson N. The inverse Sturm-Liouville problem. Mathematica Tidsskrift B, 1949: 25--30
[4] Levitan B M. On the determination of the Sturm-Liouville operator from one and two spectra. Mathematics of the USSR Izvestija. 1978, 12: 179--193
[5] Hald O H. The Sturm-Liouville problem with symmetric potentials. Acta Math, 1978, 141: 262--291
[6] Sakhnovich L. Half inverse problems on the finite interval. Inverse Problems, 2001, 17: 527--532
[7] Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM Journal of Applied Mathematics, 1978, 34: 676--680
[8] Castillo R D R. On boundary conditions of an inverse Sturm-Liouville problem. SIAM J Appl Math, 1990, 50(6): 1745--1751
[9] Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential II: the case of discrete spectrum. Trans Amer Math Soc, 2000, 352: 2765--2787
[10] Rostyslav H, Mykytyuk O. Half inverse spectral problems for Sturm-Liouville operators with singular potentials. Inverse Problem, 2004, 20(5): 1423--1444
[11] Wei G S, Xu H K. On the missing eigenvalue problem for an inverse Sturm-Liouville problem. J Math Pures Appl, 2009, 91: 468--475
[12] Koyunbakan H, Panakhov E S. Half-inverse problem for diffusion operators on the finite interval. J Math Anal Appl, 2007, 326: 1024--1030
[13] Jaulent M, Jean C. The inverse s-wave scattering problem for a class of potentials depending on energy. Comm Math Phys, 1972, 28: 177--220
[14] Gasymov M G, Guseinov G S. Determination of diffusion operator on the spectral data 1. Dokl Akad Nauk Azerb SSR, 1981, 37(2): 19--23
[15] Yang C F. Reconstruction of the diffusion operator from nodal data. Z Natureforsch, 2010, 65A: 100--106
[16] Shieh C T, Yurko V A. Inverse nodal and inverse spectral problems for discontinuous boundary value problems. Journal of Mathematical Analysis and Applications, 2008, 347(1): 266--272
[17] Yurko V A. Inverse spectral problems for Sturm-Liouville differential operators on a finite interval. J Inverse and Ill-Posed Problems, 2009, 17: 639--694
[18] Pivovarchik V N. Ambarzumyan's theorem for a Sturm-Liouville boundary value problem on a star-shaped graph. Funktsional Anal Prilozh, 2005, 39: 78--81 (in Russian); Funct Anal Appl, 2005, 39: 148--151 (in English)
[19] Mochizuki K, Trooshin I. Inverse problem for interior spectral data of Sturm-Liouville operator. J Inverse and Ill-Posed Problems, 2001, 9: 425--433
[20] Binding P A, Browne P J, Seddighi K. Sturm-Liouville problems with eigenparameter dependent boundary conditions. Proc Roy Soc Edinburgh, 1993, 37: 57--72
[21] Levitan B M, Sargsjan I S. Sturm-Liouville and Dirac Operators. Dordrecht: Kluwer Academic Publishers, 1990
[22] 杨传富, 杨孝平. 一般边界条件下Sturm-Liouville 算子的 Ambarzumyan型定理. 数学物理学报, 2010, 30A(2): 441--449
[23] 陈娟, 张鲁明. Klein-Gordon-Zakharov 方程的一类初边值问题的数值解. 数学物理学报, 2009, 29A(2): 487--496
[24] 邓冠铁. 半平面中解析函数的零点. 数学物理学报, 2006, 26A(1): 40--45
[25] 刘景麟. 常微分算子谱论. 北京:科学出版社, 2009
[26] Dunford N, Schwarz J T. Linear Operators (Part II). New York, London: Interscience Publishers, 1963 |