[1] Ansari Q H, Chan W K, Yang X Q. The system of generalized vector equilibrium problems with applications. J Global Optim, 2004, 29: 45--57
[2] Ansari Q H, Konnov, I V, Yao J C. Existence of a solution and variational principles for vector equilibrium problems. J Optim Theory Appl, 2001, 110(3): 481--492
[3] Ansari Q H, Schaible S, Yao J C. The system of generalized vector equilibrium problems with applications. J Global Optim, 2002, 22: 3--16
[4] Ansari Q H, Schaible S, Yao J C. The system of vector equilibrium problems with applications. J Optim Theory Appl, 2000, 107(3): 547--557
[5] Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequlities. Bull Australian Math Soc, 1999, 59(3): 433--442
[6] Ansari Q H, Yao J C. Systems of generalized variational inequlities and their applications. Bull Australian Math Soc, 2000, 76(3/4): 203--217
[7] Chen Y G, Yang X Q, Yu H. A nonlinear scalarization theorems and generalized vector quasi-equilibrium problems. J Global Optim, 2005, 32(4): 451--466
[8] Chen G Y, Goh C J, Yang X Q. The gap function of a convex multicriteria optimization problem. European J Oper Res, 1998, 111: 142--151
[9] Fu J Y. Vector equilibrium problems existence theorems and convexity of solution set. J Global Optim, 2005, 31: 109--119
[10] Fu J Y. Generalized vector quasi-equilibrium problemst. J Math Meth Oper Res, 2000, 52: 57--64
[11] Fu J Y, Wan A H. Generalized vector quasi-equilibrium problems with set-valued maps. J Math Meth Oper Res, 2002, 56: 259--268
[12] Fang M, Huang N J. A System of generalized mixed vector quasi-equilibrium problems in product FC-spaces. Math Sinica, 2007, 50(2): 291--298
[13] Fang M, Huang N J, Kim K J. Existence results for systems of vector equilibrium problems. J Global Optim, 2006, 35: 71--83
[14] Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization. J Optim Theory Appl, 1990, 67: 297--320
[15] Gong X. Strong vector equilibrium problems. J Global Optim, 2006, 36: 339--349
[16] Homidan S A, Ansari Q H, Schaible S. Existence of solutions of systems of generalized implicit vector variational inequalities. J Optim Theory Appl, 2007, 134: 515--531
[17] Hou H S, Yu H, Chen G Y. On vector quasi-equilibrium problems with set-valued maps. J Optim Theory Appl, 1990, 67: 297--320
[18] Lee B S, Lee G M, Lee S J. Variational-type inquelities for (η, θ,δ)-pseudomonotone-type set-valued in nonreflexive banach spaces.
J Optim Theory Appl, 2002, 15: 109--114
[19] Li J, Huang N J. An extension of gap functions for a system of vector equilibrium problems with applications to optimization problems.
J Global Optim, 2007, 39: 247--260
[20] Lin J L. System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings. J Global Optim, 2006, 34: 15--32
[21] Lin L J, Yu Z T, Kassay G. Existence of equilibria for multivalued mappings and its application to vectorial equilibria. Journal of Optimization Theory Applications, 2002, 114(1): 189--208
[22] Li S J, Teo K L, Yang X Q, Wu S Y. Gap functions and existence of solutions to generalized vector quasi-equilibrium problems. J Global Optim, 2006, 34: 427--440
[23] Li S J, Teo K L, Yang X Q. Generalized vector quasi-equilibrium problems. Mathematical Methods of Operations Research, 2005, 61: 385--397
[24] Lin Z. The study of system of vector quasi-equilibrium problems. J Global Optim, 2006, 36: 627--635
[25] Mastroeni G. The study of system of vector quasi-equilibrium problems. J Global Optim, 2003, 27: 411--426
[26] Peng J W, Lee H W J, Yang X M. On system of generalized vector quasi-equilibrium problems with set-valued maps. J Global Optim, 2006, 36: 139--158
[27] Rouhani B D, Tarafdar E, Watson P J. Existence of solution to some equilibrium problems. J Optim Theory Appl, 2005, 126(1): 97--107
[28] Ding X P. System of generalized vector quasi-equilibrium problems on product Fc-spaces. Acta Mathematica Scientia, 2007, 27(3): 522--534
[29] Ding X P. Mathematical programs with system of generalized vector quasi-equilibrium constraints in Fc-spaces. Acta Mathematica Scientia, 2010, 20(4): 1257--1268 |