[1] Hairer E, Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-algebraic Problems. Berlin: Springer-Verlag,
1996
[2] Hairer E, Lubich C H, Roche M. Error of Rosenbrock methods for stiff problems studied via differential-algebraic equations. BIT, 1989,
29: 77--90
[3] Hairer E, Lubich C H, Roche M. Error of Runge-Kutta methods for stiff problems studied via differential-algebraic equations. BIT,
1988, 28: 678--700
[4] Lubich C H, Nipp K, Stoffer D. Runge-Kutta solutions of stiff differential equations near stationary points. SIAM J Numer Anal, 1995, 32: 1296--1307
[5] Stehmel K, Weiner R, Buttner M. Order results for Rosenbrock type methods on classes of stiff equations. Numer Math, 1991, 59: 723--731
[6] Stehmel K, Weiner R, Dannehl I. On error behaviour of partioned linearly implicit Runge-Kutta methods for stiff and differential
algebraic systems. BIT, 1990, 30: 358--375
[7] Schneider S. Convergence results for general linear methods on singular perturbation problems. BIT, 1993, 33: 670--686
[8] Xiao A G, Li S F. Error of partitioned Runge-Kutta methods for multiple stiff singular perturbation problems. Computing, 2000, 64: 183--189
[9] Xiao A G, Huang C M, Gan S Q. Convergence results of one-leg and linear multistep methods for multiple stiff singular perturbation
problems. Computing, 2001, 66: 365--375
[10] Xiao A G. Convergence results of Runge-Kutta methods for multiply-stiff singular perturbation problems. J Comput Math, 2002, 20: 325--336
[11] Xiao A G, Li S F, Fu H Y, et al. Convergence of linear multistep methods for two-parameter singular pertubation problems. Acta Math
Appl Sin, 2001, 17: 208--217
[12] Xiao A G. Error analysis of variable stepsize Runge-Kutta methods for a class of multiply-stiff singular perturbation problems. Comput
Math Appl, 2007, 53: 1854--1866
[13] Podhaisky H, Schmitt B A, Weiner R. Two-step W-methods with parallel stages. Tech Report 22. Halle: Fachbereich Mathematik und Informatik Universit\"{a}t Halle, 1999
[14] Podhaisky H, Schmitt B A, Weiner R. Design,analysis and testing of some parallel two-step W-methods for stiff systems. Appl Numer Math, 2002, 42: 381--395
[15] Liu J L, Xiao A G. Convergence results of two-step W-methods for two-parameter singular perturbation problems. Appl Math Comput,
2007, 189: 669--681
[16] Sun Y G, Zhang D Y, Tian H J. Uniformly convergent numerical methods for singularly perturbed delay differential equations. J Sys Simu, 2007, 19: 3943--3945
[17] Tian H J. Dissipativity and exponential stability of θ-methods for singularly perturbed delay differential equations with a bounded lag. J Comp Math, 2003, 21: 715--726
[18] Zhu Q, Xiao A G. Parallel two-step Row-methods for stiff delay differential equations. Appl Numer Math, DOl:10.1016/j.apnum.2009.01.005
[19] Leng X, Liu D G, Song X Q, et al. Two-step continuity Rosenbrock methods of numerical simulation for stiff delay differential equations. J Sys Simu, 2006, 18: 1758--1762
[20] Gan S Q, Sun G. Runge-Kutta methods on singular perturbation problems with delay. Math Numer Sin, 2001, 23: 343--356
[21] Gan S Q, Sun G. Errors of linear multistep methods and Runge-Kutta methods for singular perturbation problems with delays. Comput Math Appl, 2002, 44: 1157--1173
[22] Gan S Q, Sun G. Convergence of one-leg methods for singular perturbation problems with delays. Sci China (Ser A), 2002, 45: 280--289
[23] Weiner R, Schmitt B A, Podhaisky H. Two-step W-methods on singular perturbation problems. Report 73. Marburg: FB Mathematik und Informatik Universität Marburg, 2000
[24] In't Hout K J. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations. BIT, 1992, 32: 634--649
[25] Wang H S, Zhang C J. Stability analysis for nonlinear multi-variable delay perturbation problems. J Southeast University, 2003, 19: 193--196 |