[1] H\"{o}mander L. On the existence of rear analytic solutions of partial differential equations with constant coefficients. Invent Math, 1973, 21: 151--183
[2] Meise R, Taylor B A, Vogt D. Characterization of the linear partial differential operators with constant coefficients that admidt a continuous linear right inverse. Ann Inst Fourier (Grenoble), 1990, 40: 619--655
[3] Meie R, Taylor B A, Vogt D. Continuous linear right inverses for partial differential operators on non-quasiaualytic classes and on ultradistributions. Math Nachr, 1996, 180: 449--464
[4] Meie R, Taylor B A, Vogt D. Phragmén-Lindel\"{o}f principles on algebraic varieties. J Amer Math Soc, 1998, 11: 1--39
[5] Braun R W, Meise R, Taylor B A. Algebraic varieties on which the classical Phragmén-Lindel\"{o}f estimates hold for plurisubharmonic functions. Math Z, 1999, 232: 103--135
[6] Braun R W, Meise R, Taylor B A. The geometry of analytic varieties satisfying the local Phragmén-Lindel\"{o}f condition and a geometoc characterization of the partial differential operators that are surjective on A(R)4. Trans Amer Soc, 2004, 356: 1315--1383
[7] Palamodov V P. A Criterion for Splitness of Differential Complexes with Constant Coeficients//C.A.Beren- stein, D.C.Struppa.
Geometrical and Algebraical Aspects in Several Complex Variables. EditEl, 1991: 265--291
[8] Bonet J, Nacinnovovich M. Overdetermined Cauchy problem in some classes of ultradifferentiable functions. Ann Math Pura Appl, 2001, 180: 81--126
[9] Braun R W, Meise R, Taylor B A. Characterizatio of the homogeneus polynomials P for which (P+Q)(D) admits a continuous linear right inverse for all pertubations Q. Pacific J Math, 2000, 192: 201--218
[10] Braun R W, Meise R, Taylor B A. Pertubation of differential operators admitting acontinuous linear right inverse on ultradistributions. Pacific J Math, 2003, 212: 25--48
[11] H\"{o}mander L. An Introduction to Complex Analysis in Several Variables. Amsterdam: Elsevier Science Publishers B V, 1990 |