数学物理学报 ›› 2011, Vol. 31 ›› Issue (3): 769-775.

• 论文 • 上一篇    下一篇

三维抛物方程基于POD基的差分格式及后验误差估计

安静1, 罗振东2   

  1. 1.贵州师范大学数学与计算机科学学院 贵阳 550001|2.华北电力大学数理学院 北京 102206
  • 收稿日期:2008-10-22 修回日期:2009-11-30 出版日期:2011-06-25 发布日期:2011-06-25
  • 基金资助:

    国家自然科学基金(10871188, 10871022)、河北省自然科学基金(A2010001663)和贵州师范大学青年教师科研发展基金资助

A Reduced Finite Difference Scheme Based on POD Bases and Posteriori Error Estimation for the Three Parabolic Equation

 AN Jing1, LUO Zhen-Dong2   

  1. 1.School of Mathematics and Computer Science, Guizhou Normal University, Guiyang |550001|2.School of Mathematics and Physics, North China Electric Power University, Beijing 102206
  • Received:2008-10-22 Revised:2009-11-30 Online:2011-06-25 Published:2011-06-25
  • Supported by:

    国家自然科学基金(10871188, 10871022)、河北省自然科学基金(A2010001663)和贵州师范大学青年教师科研发展基金资助

摘要:

该文研究了三维抛物方程有限差分格式的解空间, 利用奇异值分解求出解空间的一组POD (proper orthogonal decomposition)基, 结合Galerkin 投影方法导出了三维抛物方程有限差分格式具有较高精度的低维模型,并给出了POD格式解和有限差分格式解的误差估计.数值例子表明POD格式解和有限差分格式解的误差与理论结果是一致的, 从而验证了POD方法的有效性.

关键词: 解空间, 奇异值分解和POD基, 差分格式, 误差估计, 抛物方程

Abstract:

In this article, the solution  space of three-dimensional parabolic equation finite difference scheme is studied. Firstly a group of proper orthogonal decomposition (POD) bases of solution space is obtained by using singular value decomposition. Secondly, by combining the Galerkin projection method, the finite difference scheme of three-dimensional parabolic equation is converted into a low
dimensional mode with higher precise. Then, the error between the finite difference scheme solution and the POD scheme solution is
presented. And it is shown by the numerical results that the error between the finite difference scheme solution and the POD scheme solution is consistents with theoretical results. Therefore, the POD method is effective and feasible.

Key words: Solution space, Singular value decomposition and POD basic, Finite difference scheme, Error estimate, Parabolic equation

中图分类号: 

  • 65N30