[1] Dimitrov D T, Kojouharov H V. Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response. Appl Math Comput, 2005, 162(2): 523--538
[2] Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J Math Anal, 1986, 17(6): 1339--1353
[3] Lòpez-Gòmez J, Pardo R. Existence and uniqueness of coexistence states for the predator-prey Lotka-Volterra model with diffusion on intervals. Differential Integral Equations, 1993, 6(5): 1025--1031
[4] 郭改慧, 吴建华. 一类捕食-食饵模型正解的存在性和惟一性. 武汉大学学报(理学版), 2008, 54(1): 9--14
[5] 郭改慧, 李艳玲. 带B-D反应项的捕食-食饵模型的全局分支及稳定性. 应用数学学报, 2008, 31(2): 320--330
[6] Guo G H, Wu J H. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response.
Nonlinear Analysis TMA, 2010, 72: 1632--1646
[7] Chen W Y, Wang M X. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion. Mathematical and Computer Modelling, 2005, 42: 31--44
[8] 叶其孝, 李正元. 反应扩散方程引论. 北京: 科学出版社, 1994
[9] Smoller J. Shock Waves and Reaction-diffusion Equations. New York: Springer-Verlag, 1999: 167--180
[10] Cantrell R S, Cosner C. On the steady-state problem for the Lotka-Volterra competition model with diffusion. Houston J math, 1987, 13(3): 337--352
[11] Casal A, Eilbeck J C, Lòpez-Gòmez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion. Differential Integral Equations, 1994, 7(2): 411--439 |