[1] Anile A M, Blokhin A M, Trakhinin Yu L. Investigation of a mathematical model for radiation hydrodynamics. Z Angew Math Phys, 1999, 50: 677--697
[2] Bressan A. Hyperbolic Systems of Conservation Laws, the One-dimensional Cauchy Problem. Oxford: Oxford University Press, 2000
[3] Hartman P, Wintner A. Hyperbolic partial differential equations. Amer J Math, 1952, 74: 834--864
[4] Ito K. BV-solutions of a Hyperbolic-elliptic System for a Radiation Gas. Preprint. Hokkaide: Hokkaide University, 1997
[5] Joly J L, M\'etivier G, Rauch J. Resonantly one dimensional nonlinear geometric optics. J Funct Anal, 1993, 114: 106--231
[6] Kawashima S, Nikkuni Y, Nishibata S. The Initial Value Problem for Hyperbolic-elliptic Coupled Systems and Applications to Radiation Hydrodynamics. Analysis of Systems of Conservation Laws. Aachen: Chapman & Hall/CRC, 1997: 87--127; Monogr Surv Pure Appl Math, 99. Boca Raton, FL: Chapman \& Hall/CRC, 1999
[7] Kawashima S, Nishibata S. Cauchy problem for a model system of the radiating gas: weak solutions with a jump and classical solutions. Math Models Meth Appl Sci, 1999, 9: 69--91
[8] Kawashima S, Nishibata S. Shock waves for a model system of the radiating gas. SIAM J Math Anal, 1999, 30: 95--117
[9] Kawashima S, Tanaka Y. Stability of rarefaction waves for a model system of a radiating gas. Kyushu J Math, 2004, 58: 211--250
[10] Lax P D. Hyperbolic systems of conservation laws, part II. Comm Pure Appl Math, 1957, 10: 537--556
[11] Li L L, Yu W C. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Mathematics Series. Durham, NC: Duke University, 1985
[12] Liu T P. Hyperbolic and Viscous Conservation Laws. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2000
[13] Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variable. New York: Springer-Verlag, 1984
[14] Mihalas D, Mihalas B W. Foundations of Radiation Hydrodynamics. New York: Oxford University Press, 1984
[15] Pomraning G C. The Equations of Radiation Hydrodynamics. London: Pergamon Press, 1973
[16] Rohde C, Yong W A. The nonrelativistic limit in radiation hydrodynamics: weak entropy solutions for a model problem. J of Diff Eqs, 2007, 234: 91--109
[17] Smoller J. Shock Waves and Reaction-Diffusion Equation. New York: Springer-Verlag, 1983
[18] Wang Y G. Nonlinear geometric optics for shock waves, part II: system case. Z Anal Anw, 1997, 16: 857--918
[19] Zhong X, Jiang S. Local existence and finite-time blow-up in multidimensional radiation hydrodynamics. J Math Fluid Mech, 2007, 9: 543--564 |