数学物理学报 ›› 2011, Vol. 31 ›› Issue (1): 18-33.

• 论文 • 上一篇    下一篇

Hamilton系统的有限元研究

陈传淼1|汤琼2   

  1. 1.湖南师范大学计算研究所 410081; 2.湖南工业大学信息与计算系 湖南株洲 412008
  • 收稿日期:2008-09-15 修回日期:2010-01-25 出版日期:2011-02-25 发布日期:2011-02-25
  • 基金资助:

    国家自然科学基金(10771063)和省部共建《高性能计算和随机信息处理》重点实验室资助.

Study of Finite Elements for Hamilton Systems

 CHEN Chuan-Miao1, TANG Qiong2   

  1. 1.Institute of Computation, Hunan Normal University, Changsha 410081|2.Department of Information and Computation, Hunan University of Thechnology, Hunan Zhuzhou 412008
  • Received:2008-09-15 Revised:2010-01-25 Online:2011-02-25 Published:2011-02-25
  • Supported by:

    国家自然科学基金(10771063)和省部共建《高性能计算和随机信息处理》重点实验室资助.

摘要:

该文对Hamilton系统的连续有限元法证明了两个优美的性质:在任何情形m次有限元总是能量守恒的, 它对线性系统也是辛的,且对非线性系统每次步进是高精度O(h2m+1)近似辛的. 在长时间计算中时空平面上轨道和周期的偏离随时间线性增长. 数值实验表明其偏离比其他算法小.

关键词: Hamilton系统, 非线性, 有限元;能量守恒, 辛性质, 长时间误差

Abstract:

Two nice properties of the continuous finite element method for Hamilton systems are proved as follows: in any case the m-degree finite elements always preserve the energy which is sympletic for linear systems and is approximately sympletic with high accuracy O(h2m+1) in each stepping for nonlinear systems. In long-time computation the deviation of trajectories and their periods in time-space plane will crease linearly with time. Numerical experiments show that their deviations are often  smaller than that of other schemes.

Key words: Hamilton systems,  Nonlinear, Finite elements, Energy conservation, Sympleticity,  Long-time error

中图分类号: 

  • 65N30