[1] 冯康. 冯康全集.北京:国防工业出版社, 1995: 1-2卷
[2] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法. 杭州: 浙江科学技术出版社, 2003
[3] Sanz-Senna J M, Calvo P M. Numerical Hamilton Problems. London: Chamman Hall, 1994
[4] Marsden J E, Ratiu S T. Introduction to Mechanics and Symmetry. New York: Springer-Verlag, 1994
[5] Stuart A M, Humphries A R. Dynamical Systems and Numerical Analysis. Cambridge: Cambridge University Press, 1996
[6] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration---Structure-Preserving Algorithms for Ordinary Differential Equations. Series in Computational Mathematics 31, Berlin: Springer, 2002
[7] Ge Z, Marsden J F. Lie-Poisson Hamiltonb-Jacobi theory and Lie-Poisson integrators. Phys Lett A, 1988, 133: 134--139
[8] Sanz-Serna J M. Runge-Kutta schemes for Hamiltonian systems. BIT, 1988, 28: 877--883
[9] Kane C, Marsden J E, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Math Phys, 1999, 40: 3353--3371
[10] Gonzalez O, Simo J C. On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry. Comp Meth Appl Mech and Eng, 1996, 134: 197--222
[11] 郭柏灵. 非线性演化方程. 上海: 上海科技教育出版社, 1995
[12] 钟万勰. 应用力学对偶体系. 北京:科学出版社, 2002
[13] 钟万勰, 姚征. 时间有限元与保辛. 机械强度, 2005, 27: 178--183
[14] 陈传淼. 有限元超收敛构造理论.长沙:湖南科技出版社, 2001
[15] 陈传淼. 科学计算概论. 北京: 科学出版社, 2007
[16] Chen C M, Tang Q. Study of Finite Elements for Nonlinear Hamilton Systems. Changsha: Fifth Intern Conf on PDE and Numerical Analysis, 2006
[17] 李延欣,丁培柱. A2B模型分子经典轨迹的辛算法计算.高等学校化学学报,1994, 15: 1181
[18] Lin X S, Qi Y Y, He J F, Ding P Z. Recent progress in sympletic algorithms for use in quantum sysrems. Commun Comput Phys, 2007, 2: 1--53
[19] 汤琼, 陈传淼. SchrÖdinger方程的时空有限元与守恒性. 应用数学和力学, 2006, 27: 335--340 |