数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1474-1484.

• 论文 • 上一篇    下一篇

具有奇异分枝机制的超扩散过程的性质

张静1,2, 任艳霞2   

  1. 1.内蒙古大学数学科学学院 呼和浩特 010021|2.北京大学数学科学学院 北京 100871
  • 收稿日期:2008-01-19 修回日期:2009-06-09 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10971003)资助

Properties of Superdiffusions with Singular Branching Mechanism

 ZHANG Jing1,2, REN Yan-Xia2   

  1. 1.School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021;
    2.School of Mathematical Sciences, Peking University, Beijing 100871
  • Received:2008-01-19 Revised:2009-06-09 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10971003)资助

摘要:

X是任意区域D\subseteq\textrm{R}^{d}$上的超扩散过程, 其底过程ζ是D上生成元为

L=1/2∑}\sum\limits_{i,j=1}^{d}a_{i,j}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\sum\limits_{i=1}^{d}b_{i}(x)\frac{\partial}{\partial x_{i}}$$

的在边界具有吸收壁的扩散过程, 分枝率为dt, 分枝机制为ψ(x, z) =α(x)z2, x ∈D, 其中α∈Cη(D)(0<η≤1), 且其在D 的一有界区域D0及其边界上恒为零, 在D\D0上严格大于零.该文主要研究上述具有奇异分枝机制的超扩散过程X的灭绝性、紧支撑性及支撑的紧性.

关键词: 超扩散过程, 灭绝性, 紧支撑性, 支撑的紧性

Abstract:

Suppose X is a superdiffusion on domain $D\subseteq\textrm{R}^{d}$, whose underlying motion ζ is a diffusion process with absorption at the boundary corresponding to generator
 $$L=\frac{1}{2}\sum\limits_{i,j=1}^{d}a_{i,j}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}+\sum\limits_{i=1}^{d}b_{i}(x)\frac{\partial}{\partial x_{i}},$$
 whose  branching rate function is dt, and branching mechanism is of the form ψ(x, z) =α(x)z2, x ∈D, α∈Cη(D)(0<η≤1), and α(x)≡0 on D0(D0 is a bounded domain in D), α>0 on D\D0. The authors prove criteria for extinction, compact support property and global support being compact.

Key words: Superdiffusion, Extinction, Compact support property, Global support being compact

中图分类号: 

  • 60J80