[1] Borns D W, Mack J M. An Algebraic Introduction on Mathematical Logic. Berlin: Springer, 1975
[2] Bolc L, Borowik P. Many-valued Logics. Berlin: Springer-Verlag, 1992
[3] Ben-Eliyahu R, Dechter R. Default reasoning using classical logic. Artificial Intelligence, 1996, 84: 113--150
[4] Goguen J A. The logic of inexact concepts. Synthese, 1969, 19: 325--373
[5] Pavelka J. On fuzzy logic I, II, III. Zeitschr. F Math Logic and Grundlagend Math, 1979, 25: 45--52, 119--134, 447--464
[6] Novak V. First-order fuzzy logic. Studia Logica, 1982, 46(1): 87--109
[7] 徐扬. 格蕴涵代数. 西南交通大学学报, 1993, 28(1): 20--27
[8] Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic. Berlin: Springer, 2003
[9] Liu J, Xu Y. On filters and structures of lattice implication algebras. Chinese Science Bulletin, 1997, 42(18): 1517--1520
[10] Xu Y, Qin K Y, Liu J, et al. L-valued propositional logic Lvpl. Information Sci, 1999, 114: 205--235
[11] Xu Y, Kerre E E, Ruan D, et al. Fuzzy reasoning based on the extension principle. Int J Intelligent System, 2001, 16(4): 469--495
[12] Xu Y, Ruan D, Kerre E E, et al. α-resolution principle based on first-order lattice-valued logic LF(X). Information Sci, 2001, 132: 221--239
[13] Lai J J, Xu Y, Zen Z Y, et al. WLI-ideals in lattice implication algebra. Inter J of Computer Science and Network Security, 2006, 6(9): 28--32
[14] Lai J J, Xu Y. Logical properties of lattice filter of lattice implication algebra. Journal of Southwest Jiaotong University, 2007, 15(4): 353--356
[15] 徐扬, 秦克云. 格H 蕴涵代数和格蕴涵代数类.河北煤炭工程学院学报, 1992, 3: 139--143
[16] Qin K Y, Pei Z, Jun Y B. On normed lattice implication algebras. J Fuzzy Mathematics, 2006, 14(3): 673--681
[17] 王国俊, 王伟. 逻辑度量空间. 数学学报, 2001, 44(1): 159--168
[18] 王国俊, 宋庆燕, 宋玉靖. Boolean代数上的度量结构及其在命题逻辑中的应用. 数学学报, 2004, 47(2): 317--326
[19] Birkhoff G. Lattice Theory. 3rd ed. New York: American Mathematical Society, 1967: 6--14
[20] Lai J J, Xu Y, Chang Z Y. On FP-filters and FPD-filters of lattice implication algebra. International Journal of Appl Math and Informatics, 2008, 26(3/4): 653--660
[21] Lai J J, Xu Y. On WLI-ideal space and the properties of WLI-ideals in lattice implication algebra (LIA). International Journal of Applied Mathematics and Computing (Springer), 2009, 31(1): 113--127
[22] Lai J J, Xu Y, Ma J, et al. Congruence relations induced by weak-filters and FWLI-ideals in lattice implication algebra. International Journal of Modern Mathematics, 2007, 2(1): 135--142
[23] 赖家俊, 徐扬. 格蕴涵代数不等式. 江南大学学报, 2007, 6(3): 366--370
[24] 赖家俊, 徐扬. 赋范格H 蕴涵代数与模糊赋范格$H$蕴涵代数. 计算机科学, 2008, 35(11): 156--160 |